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Introduction: The limitation of the 2™ order diffusion tensor model in the representation of voxels containing more than one dominant fiber
direction have led to the development of more advanced representations. Here the focus is especially on higher order diffusion tensor models [1,2].
These more advanced diffusion models require datasets which provide diffusion information for a larger number of gradient encoding directions. The
dependence of the 2nd order tensor quality on the gradient direction set used in the data acquisition has been previously investigated (for example [3-
5]), but higher order tensor models pose different demands on the diffusion data set. Here we investigate the effect of differently distributed sets of
gradient encoding directions, so called gradient encoding schemes (GES) on higher order tensor models. For this purpose we propose a new measure
for the quality of GESs, the investigation of the “signal deviation”.

Methods: GES Quality Measure: The signal deviation # is estimated by

comparing the signal Sy(I) with the signal §(T) for each direction in the GES and |) Sg(| )=Syexp(-BD,) + noise; )Sg (T) =Sy exp(-BD7)
averaging the differences (III in Fig.1). To account for rotational dependence of

the GES quality, we did rotate the input tensor D), did evaluate # for each rotation 1 Ne|Sq, (T)=Sq, (1)

and used the mean 7 over all rotations as quality measure. A GES was considered )Hn :N_ 2

to be of “good quality” if it had a low mean # and low corresponding standard ) € kzl. S L )
deviation. The signal deviation is not only able to show the influence of the GES, Figure 1. In | the input signal Sy(1) for direction g is
when 7 is evaluated for a single diffusion model and different GES, but can also be derived from a chosen input tensor D, with & the un-
used to evaluate the accuracy of the representation for different diffusion models if We|gh_ted sgnal and_ B the estimation matrlx,_ Wh' ch

the same GES is used to compute # for different models. Evaluated GES: We did contains the information on the GES and the diffusion
evaluate this new GES quality measure for GES that are based on mesh weighting (b-factor). In 11 the signal for testing the
refinements of a regular icosahedral grid (Icosa [5]), pair wise and individual representation _qual'ty $(T) is computed from the tensor
force-minimization (ForcePairs [6] and ForceSingle [7]), condition number Dr that was fitted to (). The signal deviation n1s
minimization (Cond [4]) and analytical formulas (Anal [8] and Ana2 [9]). calculated with |11, where N, is the number of encoding
Evaluated Tensor Models: The signal deviation was evaluated for the 2™ order directions.

tensor model [10], the 4™ order tensor proposed by Ozarslan and Mareci [2] and
the higher order tensor hierarchy proposed by Liu et al [1].

Results: The signal deviation was evaluated for different noise levels and numbers
of directions. In Fig.2 exemplary results for an evaluation of GES with 21 directions,
which is the smallest possible N, for the higher order tensor hierarchy up to tensor
order four, are shown. The chosen input tensor D, was a higher order tensor 1o OCond B Ana2 EAnai
hierarchy representation of a voxel containing two orthogonally crossing fibers. The
results of an evaluation without noise are presented in Fig.2, because they show the
individual differences between the GES most clearly. The mean # and corresponding 8
standard deviation are scaled (scaling factors are given in Fig.2) to allow an inter- 7 30x 2000x 1x
model comparison even though the absolute values for the individual diffusion
tensor models are of different order of magnitude. For ForcePairs [6] for example the
mean # (standard deviation) for the 4™ order tensor is 3.342 (0.007), for the 2nd 5
order tensor 0.117 (2.61e-4) and for the higher order tensor hierarchy 1.53e-3 (5.96e- 4
5). The evaluation of the mean # (bars in Fig.2) shows that the Cond GES has a :

considerably higher mean compared to the other GES independent of the tensor I:" .__Ll
model. The difference between the mean values for the other GESs is not as clear. 2
The standard deviation (error bars in Fig.2) also shows a strong dominance of the
Cond scheme but allows differentiation between the results for the other GESs. The Figure 2: The scaled mean signal deviation is plotted for
analytical GES (Anal and An?.2) and ForceSingle show a larger standard df:viation all evaluated GES and tensor models. The tensor model
than ForcePairs and Icosa, which can be observed best in the scaled tensor hierarchy dependent scaling factors are given in the plot.

results in Fig.2. A slight advantage of ForcePairs over Icosa is observable for both

higher order tensor models but not for the 2™ order tensor.

Discussion: The here introduced signal deviation is a GES quality measure that is directly applicable to the 2" order diffusion tensor and the here
evaluated higher order tensor models. The signal deviation # can also be evaluated for other diffusion models so that good quality GESs for any
model can be found. The results from the evaluation of the 2™ order diffusion tensor correspond to the results presented in earlier studies [3-5]. The
ForcePairs and Icosa GES clearly outperform all other GESs in our evaluation. For higher order tensor models ForcePairs shows a slightly lower
standard deviation of #. ForcePairs is therefore the most advantageous GES for the here evaluated diffusion models.
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