

T1rho (T_{1ρ}) MR imaging in Alzheimer's Disease and Parkinson's Disease

A. Singh¹, M. Haris¹, E. McArdle¹, M. Sochor¹, M. Fenty¹, C. Davatzikos², J. Q. Trojanowski³, E. R. Melhem⁴, C. M. Clark⁵, R. Reddy¹, and A. Borthakur¹

¹MMRRC, Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²SBIA, Radiology, University of Pennsylvania, Philadelphia, PA, United States,

³Department of Pathology & Lab Medicine, University of Pennsylvania, Philadelphia, PA, United States, ⁴Radiology, University of Pennsylvania, Philadelphia, PA, United States, ⁵Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States

Introduction:

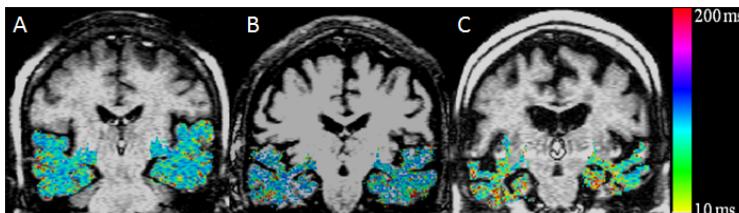
Alzheimer's disease (AD) accounts for 50–60% of cases of dementia in the elderly. The neuropathological features of AD include widespread neuronal loss, neurofibrillary tangles affecting many surviving neurons, and deposition of beta-amyloid plaques¹. On the other hand Parkinson's disease (PD) is a neurodegenerative disorder that affects an estimated 1 million people in the US and tens of millions worldwide and is associated with the loss of dopaminergic neurons in the substantia nigra². Diagnosis of both AD and PD can be difficult in elderly patients because some of the key symptoms also may be manifestations of normal aging in both cases (AD and PD). Early and correct diagnosis and treatment of both AD and Parkinson's disease (PD) are crucial for the patient's well being. Structural neuroimaging has the potential to play an important role in the early diagnosis of both AD and PD. It has been shown that both AD and PD individuals showed high Medial temporal lobe (MTL) atrophy compared to controls³. However, the age related atrophy in the previous study may contribute and misinterpret the final results. An alternate contrast mechanism is T1rho (T_{1ρ}), the spin lattice relaxation time constant in the rotating frame, which determines the decay of transfer magnetization in the presence of "spin-lock" radio-frequency field. In biological tissue exchange between protons in different environments is expected to contribute T_{1ρ} relaxation. The molecular process that occurs in the milliseconds range influences T_{1ρ} relaxation time constant. The current study was performed with an aim to measure the base line T_{1ρ} in MTL in the brain of Control, AD and PD cohorts and to determine whether the T_{1ρ} value show any significant difference between these cohorts.

Materials and Methods:

Subjects: The Institutional Review Board approved the study protocols. In the current study, we included 54 AD patients (mean age \pm SD = 73.6 \pm 7.8 years), 52 PD patients (mean age \pm SD = 72.7 \pm 9.2 years), and 40 age-matched controls (mean age \pm SD = 70.7 \pm 8.6 years). All patients underwent a standardized clinical assessment including medical history, physical and neurological examination, psychometric evaluation, and brain MRI.

MRI: All these patients underwent a standard MRI protocol on a 1.5 Tesla Siemens Sonata clinical scanner using the vendor-supplied head coil. The written informed consent was obtained from each patient before they underwent for MRI. For T_{1ρ} MRI, a fluid-attenuated T_{1ρ} pre-encoded Turbo Spin-Echo pulse sequence was used (8). The imaging parameters were: TE/TR = 12/2000 ms, TSL (duration of spin lock pulse) = 10, 20, 30, 40 ms, with a spin lock frequency of 500Hz, slice thickness = 2mm, FOV = 22 cm, Matrix size=256x128, bandwidth= 130Hz/pixel, echo train length = 4. The inversion time (TI) was fixed at 860 ms to remove the contribution of the CSF to the T_{1ρ} maps. An oblique coronal T_{1ρ} weighted image of a slice perpendicular to the anterior/posterior commissure (AC/PC) plane was obtained. The slice was chosen to include the head of the hippocampus. Immediately after T_{1ρ} MRI, the entire volume of each subject's brain was imaged in the coronal plane using a T₁-weighted 3D volumetric MPRAGE pulse sequence with 124 continuous slices. The parameters were TR/TE= 3000 ms/ 3.5ms, slice thickness= 1.2 mm, FOV of 24 cm and 192 phase encode steps, and flip angle =8° for a total imaging time of 10 min.

Data Processing: T_{1ρ} maps were generated by fitting each pixel's intensity as a function of the duration of the spin-lock pulse (TSL) by a linear least-squares algorithm⁴. Pixels whose intensities correlated poorly (R²<0.95) with the fitting equation were set to zero. Pixels outside of the brain were also set to zero. T_{1ρ} values were automatically calculated from the gray matter (GM) and white matter (WM) of right and left MTL by an algorithm described previously. For GM and WM segmentation a previously developed method was used to partition the volumetric MPRAGE scans into 92 ROIs incorporating all major cortical and sub-cortical regions⁵. This method deforms MRI scans of different brains into anatomical co-registration with each other, and into co-registration with a standardized template. The template's labels are then transformed to individual scans by applying the elastic transformation that was found to co-register the respective images.


Statistical analyses: For statistical analysis T_{1ρ} value from the left and right side were averaged both for GM and WM. One Way Analysis of Variance (ANOVA) using Bonferroni post-hoc multiple comparisons was performed. Pearson correlation was performed between T_{1ρ} values versus age.

Results:

The average GM and WM T_{1ρ} values in MTL in the brain of control, AD and PD are reported in Table 1. Figure 1 shows T_{1ρ} maps in MTL of control, MCI and AD. Higher T_{1ρ} pixels (in red) were found in the AD subjects compared to control and PD. One way ANOVA showed that both the GM and WM T_{1ρ} value were significantly different between three groups (control, AD and PD). The Bonferroni's multiple comparisons showed that the GM T_{1ρ} was only significant decreased in PD compared to AD, while in case of WM both control and PD showed significant decreased T_{1ρ} value compared to AD. No significant difference was observed either for GM or WM T_{1ρ} between control and PD. The AD group showed 10% increase in GM T_{1ρ} and 9% increase in WM T_{1ρ} value over control while on comparing to PD T_{1ρ} was increased by 12% in GM and 14% in WM. The control showed a 5% increase in GM T_{1ρ} and 6% increase in WM T_{1ρ} compared to PD. We did not find any significant correlation between T_{1ρ} and age in all three cohorts (control, AD and PD).

Discussion:

In the current study, we found increased T_{1ρ} in the MTL in the brain of AD compared to age-matched control and PD cohorts. The PD individuals showed decreased (5-6%) T_{1ρ} value compared to controls. The presence of pathology in AD may contribute to molecular interactions such as exchanging protons from bulk water with protons associated with slowly tumbling macromolecules in the extracellular space resulting in an increased T_{1ρ}. The decreased T_{1ρ} in PD is probably due to proton spin dephasing from iron-induced local field inhomogeneities resulting from the increased iron content in the substantia nigra in PD patients. The serial measurement of T_{1ρ} in both AD and PD may provide the nature of disease progression and would contribute to their early diagnosis in the future.

Fig.1 T_{1ρ} maps of the medial temporal lobe (MTL) region overlaid on fluid- T_{1ρ} MRI in the brain of control (A), PD (B) and AD patient (C). Pixels with higher T_{1ρ} (red) are more prominent in MTL of AD patient.

	Gray matter (mean \pm SE)	White matter (mean \pm SE)
Control	86.9 \pm 1.3	79.9 \pm 1.5
AD	90.1 \pm 0.9	85.6 \pm 1.3
PD	83.9 \pm 1.1	76.9 \pm 1.4
ANOVA (p value)	0.000	0.000

Table 1. T_{1ρ} value in medial temporal lobe (gray matter and white matter) of control, AD and PD

References:

1. Braak et al. Acta Neuropathol 1991;82:239-59, 2. Gelb et al. Arch Neurol 1999;56:33-9, 3. Tam et al. Neurology 2005;64:861-65, 4. Borthakur A et al. Neuroimage 2008;41:1199-1205, 5. Davatzikos C et al. Neurobiol Aging 2008;29:514-23