Measurements of glial metabolic fluxes with 11C-acetate using positron emission and 1H{13C} NMR spectroscopy

B. Lanz¹, L. Xin¹, M. T. Wyss², B. Weber^{2,3}, A. Buck², and R. Gruetter^{1,4}

¹Laboratory for functional and metabolic imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ²PET Center, University Hospital Zurich, Division of Nuclear Medicine, Zurich, Switzerland, ³Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland, ⁴Departments of Radiology, Universities of Lausanne and Geneva, Lausanne and Geneva, Switzerland

Introduction:

Nuclear imaging and NMR are two ways to study the brain metabolism. Acetate, which is taken up only by the glia, in combination with ¹³C MRS and two-compartment modeling allows the determination of the Krebs cycle fluxes of the glia and the neurons as well as their interaction through the neurotransmission cycle [1]. NMR is able to distinguish different labeled chemical groups, while methods based on radioactive tracers allows a highly sensitive detection and a better time resolution, however without chemical differentiation. In this study, we report the results obtained by using an adapted NMR acetate metabolism model to analyse beta-probe data following [1-¹¹C]acetate infusion in rats and compare it to the results of ¹H{¹³C} NMR spectroscopy following [2-¹³C]acetate infusion.

Materials and methods:

Brain acetate infusion experiments were modeled using a two compartments model [3] and a simplification of the Krebs cycle modeling recently proposed [4]. The same brain metabolism model was applied to beta-probe and MRS acetate infusion experiments, using respectively radioactive [1-¹¹C]acetate and stable [2-¹³C]acetate as precursor. In the first case, the signal measured with a beta-probe inserted in the brain [5,6] represents the time evolution of the total amount of labeled metabolites (glutamine and glutamate at position C5 or C1). Total blood radioactivity was continuously recorded using an arterio-venous shunt and a coincidence counter [7] to obtain the arterial input function, following the bolus infusion. All the measurements were corrected for radioactive decay. A portion of the measured signal is reflecting the blood radioactivity due to blood partial volume in the brain (around 5% of the volume in rats). Since with bolus injection the blood radioactivity was slowly varying and negligible after 2 minutes, we omitted the first 2 minutes for the fit. In the second case, ¹H{¹³C} NMR spectroscopy was used to measure ¹³C labeling of glutamate and glutamine at the positions C4 and C3. The infusion protocol was adjusted to obtain a constant ¹³C plasma acetate FE. The model was adapted to the labeled carbon positions of the infused acetate. As shown in the past [4] for single-compartment models, the use of the

composite flux $^{Vgt} = \frac{Vx \, Vtca}{Vx + Vtca}$ is expedient to describe the turnover of the first labeled position of glutamate (and thus of glutamine). This still holds in the two-compartment model for glial and neuronal TCA cycles. Thus, in the [2-\frac{13}{C}]acetate case, the apparent glial Krebs-cycle rate (Vgt\frac{8}{2}) and the neuronal one (Vgt\frac{8}{2}) as well as the apparent neurotransmission flux Vnt were fitted using the signal of glutamine and glutamate labeled at position 4 and 3. In addition to previous models, we found that the separate measurement of glutamate and glutamine C3 allowed to assess the glial transmitochondrial flux Vx\frac{8}{2}. In the [1-\frac{11}{2}]acetate case, the total tissue radioactivity curve is dominated by the signal of the first labeled position C5 of glial glutamate and glutamine essentially reflecting Vgt\frac{8}{2} and Vnt. The small FE of the neuronal pools makes the estimation of neuronal Vgt\frac{8}{2} impossible. So, Vgt\frac{9}{2} and Vnt were fitted, while the Vgt\frac{8}{2} was fixed to the average value found in the NMR study.

Results and Discussion:

- $1.^{1}H\{^{13}C\}$ MRS data were averaged from 5 rats and the isotopic enrichment turnover curves fitted for glutamate and glutamine C4 and C3 result in values of glial $Vgt^g = 0.061\pm0.003 \,\mu\text{mol/g/min}$, neuronal $Vgt^n = 0.21\pm0.02 \,\mu\text{mol/g/min}$ and $Vnt = 0.16\pm0.01 \,\mu\text{mol/g/min}$. A preliminary fit of the C3 positions enabled an insight in the glial transmitochondrial flux Vx^g . Note the excellent fit in figure 2 found with Vx^g on the order of $Vtca^g$, while $Vx^g = 5 \,Vtca^g$ resulted in substantial fit residuals (not shown).
- 2. In the case of $[1^{-1}C]$ acetate infusion, the model was fitted successfully to the different tissue activity curves of 6 animals, by varying the glial mitochondrial fluxes and Vnt. A glial composite rate constant $Kgt^g = Vgt^g/[Ace]_{plasma}$ was extracted from the experimental data. Considering an average acetate concentration in plasma of 1 μ mol/g [8] and the negligible additional amount injected, we found an average of $Vgt^g = 0.077 \pm 0.018$ (n=6), which is in good agreement with the NMR measurements in the present study and the literature [8].
- 3. Another metabolite entering in consideration when using radioactive 11 C measurements is the production of radioactive 11 CO₂. Based on the high diffusivity of CO₂ across the blood-brain barrier, the model predicts small amount of 11 CO₂, below 5% of the total tissue activity after the two first minutes. The initial peak is essentially due to the direct degradation of acetate into CO₂ through the TCA cycle (i.e. 11 C flowing directly from acetate to CO₂ without passing through the glutamate pools). The height of this initial peak is thus dependent on the value of the glial Vx^g relative to $Vtca^g$.

We conclude that the two-compartment model presented here is able to fit data of two intrinsically different measurement modalities of brain metabolism: whereas $^{1}H\{^{13}C\}$ MRS following [2- ^{13}C]acetate infusion is able to give a precise insight of the respective activity of the glial and neuronal mitochondrial fluxes as well as of the apparent neurotransmission. ^{11}C PET presents a faster alternative to the glial Krebs cycle measurement, potentially applicable to human PET imaging.

References: 1. RA de Graaf, et al. NMR Biomed. 16:339 (2003) 2. B Lanz et al. Proc. Intl. Soc. Mag. Reson. Med. 16: 1643 (2008) 3. R Gruetter, et al. Am. J. Physiol. Endocrinol. Metab. 281:100 (2001); 4. K Uffmann, et al. J. Neurosci. Res. 85(13):3304 (2007); 5. B Weber, et al. J. Cereb. Blood Flow Metab. 23:1455 (2003); 6. MT Wyss, et al. NeuroImage 35:1086 (2007); 7. B Weber, et al. Eur. J. Nucl. Med. 29:319 (2002); 8. N Cetin, et al. Neurochem. Int. 5:359 (2003);

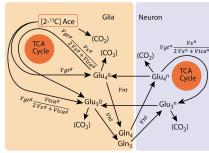


Fig.1: Model used for [2-¹³C]acetate infusion (NMR study). A similar model [2] was used for ¹¹C studies, with adapted label positions (i.e. glutamate and glutamine C5 followed by C1)

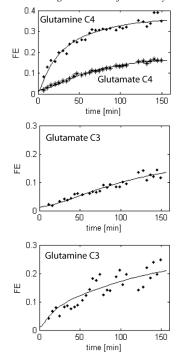


Fig.2: Fits of the MRS data averaged on 5 animals, using the model shown in figure 1.

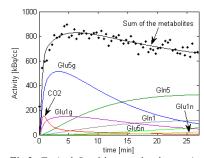


Fig.3: Typical fit of beta-probe data, using a similar model than in figure 1, adapted to the different labeled carbon positions.

Acknowledgments: Supported by Centre d'Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeantet Foundations; SNF grant No. 3100A0-116220.