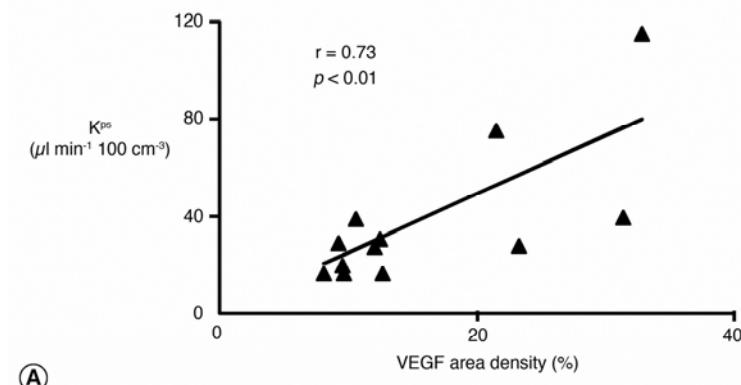
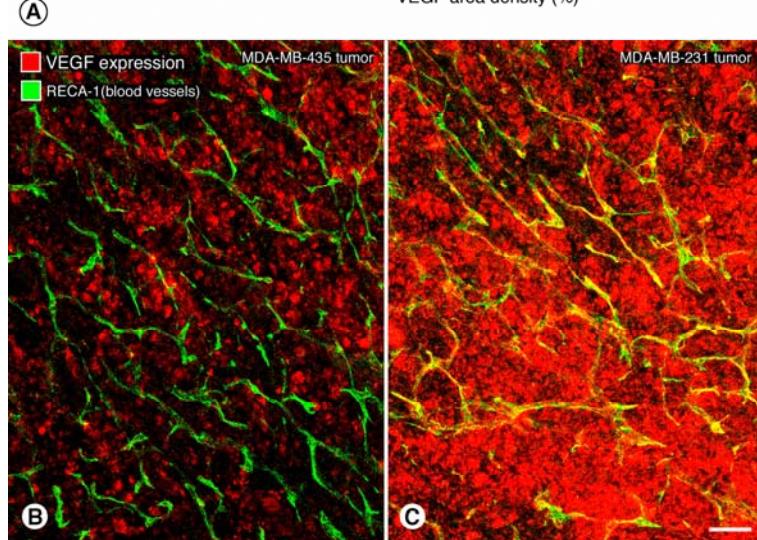


Dynamic MRI assays of endothelial permeability for the non-invasive differentiation of tumors with high from tumors with low VEGF-activity

C. C. Cyran¹, B. Sennino², Y. Fu³, V. Rogut³, B. Chaopathomkul³, D. M. Shames³, M. F. Wendland³, D. M. McDonald², and R. C. Brasch³


¹Department of Clinical Radiology, University Hospitals Munich - Grosshadern, Munich, Germany, ²Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California San Francisco, San Francisco, California, United States, ³Radiology, University of California San Francisco, San Francisco, California, United States

Purpose: To evaluate dynamic MRI assays of endothelial permeability for their potential to differentiate tumors with high intrinsic vascular endothelial growth factor (VEGF) activity from tumors with low VEGF-activity by correlating dynamic MRI assays of endothelial permeability with immunohistochemical measurements of VEGF on a tumor-by-tumor basis.


Methods and Material: Subcutaneous tumor xenografts were grown in athymic rats ($n=13$) from two poorly differentiated, estrogen-receptor-negative human breast cancer cell lines; MDA-MB-231 ($n=5$) with a high level of intrinsic VEGF-activity and MDA-MB-435 ($n=8$) with a low level of intrinsic VEGF-activity. Dynamic contrast-enhanced MRI was performed at 2.0T using the macromolecular contrast agent albumin-(Gd-DTPA)₂₇ (1). Quantitative estimates of tumor microvessel permeability (K^{PS} ; $\mu\text{l}/\text{min} \cdot 100\text{cm}^3$), based on a two-compartment kinetic model (2), were correlated with area-density (%) measurements of VEGF-immunoreactivity on tumor sections.

Results: Tumor endothelial permeability, assayed as the endothelial transfer coefficient K^{PS} , was significantly higher ($p<0.03$) in MDA-MB-231 tumors ($K^{PS}=58 \pm 30.9 \mu\text{l}/\text{min} \cdot 100\text{cm}^3$) than in MDA-MB-435 tumors ($K^{PS}=24 \pm 8.4 \mu\text{l}/\text{min} \cdot 100\text{cm}^3$, $p<0.05$). Correspondingly, VEGF area-density in MDA-MB-231 tumors was significantly higher ($27.3 \pm 2.2\%$) than in MDA-MB-435 human breast cancer xenografts ($10.5 \pm 0.5\%$, $p<0.05$). Individual measurements for the two groups did not overlap. The correlation between K^{PS} values and measurements of VEGF area-density was significant ($r=0.73$, $p<0.01$).

Conclusion: Dynamic MRI assays of endothelial permeability have the potential to non-invasively assess VEGF-activity in tumors and could be clinically applicable to define the suitability of patients for VEGF-inhibiting anti-angiogenic drug therapy.

Figure (A). Graph showing the correlation, $r = 0.73$, $p < 0.01$, for each examined MDA-MB-435 and MDA-MB-231 tumor, between the MRI-assayed endothelial transfer coefficient K^{PS} ($\mu\text{L} \cdot \text{min}^{-1} \cdot 100 \text{cm}^{-3}$) and the immunohistochemically-assessed VEGF-area density (%). All values of VEGF area density greater than 20% are from MDA-231 tumors. Solid line denotes the best fit.

Figure (B, C) Confocal microscopic images of MDA-MB-435 and MDA-MB-231 tumors, stained for VEGF (red) and blood vessels (green), showing the relatively low expression of VEGF in MDA-MB-435 tumor (B) and the high expression of VEGF in MDA-MB-231 tumor (C). Scale bar: 120 μm in (B, C).

References:

1. Van Dijke CF et al Acad Radiol 9 (Suppl 1) 2002; 257–260.
2. Cyran CC et al J Magn Reson Imaging. 2008; 27(3):581-9.