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Table 1: Current and charge induced for 
movements in magnetic fields. 
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Introduction: It is well known that electric fields are induced in the human body due to changes in magnetic field with time.  High rates-of-change of magnetic field in 
the 0.1 Hz – 10 kHz range can cause peripheral nerve stimulation (PNS), magnetophosphenes, vertigo, and metallic taste [1, 2].  Analytic calculations and numerical 
modelling have previously been used to estimate the magnitude of the electric fields induced in the body during magnetic field gradient switching and natural 
movements in the environment of scanner magnets[3-5].  The aim of the work described here is to highlight a potential error in the approach that has been used in a 
number of previous investigations involving calculating of the currents induced in the body by rotation (e.g. bending, leaning or twisting) in magnetic fields.  Errors 
arise from calculation of the induced electric field in terms of the rate of change of the vector potential rather than  Bv ×  and from neglecting the presence of the 
induced space charge. We show that use of the incorrect formulation can give rise to large errors in the calculated electric fields and current densities.  

Theory: The electric field , E′ , induced in a body moving at velocity, v, in a magnetic field, B, is given by Faraday’s Law as ( )BvBE ××∇+∂∂−=′×∇ t  [Eqn. 1] 

where the electric field is calculated in the moving frame of reference of the object and the magnetic field and its rate of change are defined in the stationary, laboratory 
frame [6, 7].  The Bv × term arises from considering the Lorentz force on charges in the object as it moves in a magnetic field.  

When calculating the induced electric field it is convenient to use the scalar-potential finite-difference (SPFD) 
method (or similar) and to define the magnetic field in terms of the vector potential, A, (i.e. AB ×∇= ) so that the 
electric field may be written as, Vt ∇−×+∂∂−= BvAE  [Eqn. 2] where V is a scalar potential. This scalar 

potential arises due to surface charges which form in order to satisfy continuity of current at boundaries. In the 
situation where the object is stationary and the magnetic field varies in time, the electric field may be correctly 
written as, Vt ∇−∂∂−= AE [Eqn. 3]. However whilst this expression is valid for stationary systems, errors occur 

when it is applied to a moving system and the rate of change of A is  calculated as the difference in A measured at 
two points separated by an infinitesimal distance in the direction of local motion divided by the time taken to 
travel between these points i.e. setting ( ) V∇−∇⋅−= AvE [Eqn. 4]. To examine the origin of this error, let the 

motion of the body (assumed to be rigid) be defined as a sum of a translation at velocity v0 and a rotation with 
angular velocity  Ω, such that ( ) rvrv ×+= Ω0 . In this situation ( ) ( ) AAvAvBv ×+⋅∇+∇⋅−=× Ω [Eqn. 5] 

which makes clear that calculating the induced electric field in terms of ( )Av ∇⋅−  may give a very different 

result than use of Bv × . Since ( ) 0=⋅∇×∇ Av discrepancies occur whenever ( )A××∇ Ω  is non-zero.  Thus for 

translational motion (Ω = 0) use of either ( )Av ∇⋅−  or Bv ×  will yield the correct electric field, but for rotational 

motion it is necessary to use  Bv ×  as the driving term unless ( )A×Ω is irrotational.  In addition, by computing the divergence of E’ we can conclude that in the case 

of rotational motion a space charge term ( ) BBvE ⋅−=×⋅∇−=′⋅∇= Ω000 2εεερ  may be induced.  It can be noted that this induced charge density is independent 

of the conductivity and is generated if the system rotates in a magnetic field that is not perpendicular to the axis of rotation.  This space charge gives rise to a 
conservative electric field which generally opposes the induced electric field.  In some cases these fields completely cancel out so that no currents flow in the object.  It 
is worth noting that the permittivity of free space is seen in this expression rather than the permittivity of the object because the space charge depends on the free 
charges within a conductor and not on the polarization charges in a dielectric.  In the SPFD method this additional charge can be modelled using an additional scalar 
potential, V’, such that B⋅=′∇ Ω22V .  Table 1 summarises the expected characteristics of the charge and current densities induced by rotational and translational 
movements in a static magnetic field when the correct formalism (Eqn.1) is used.  The conditions needed for current to flow are also noted in the Table. 

Methods and Results: To demonstrate the effect of neglecting the ( )A×Ω term, the induced electric field has been calculated for three specific examples, spanning 

analytic and numerical methods: 

1) A uniform conducting sphere rotates at angular velocity, Ω, about the x-axis in a uniform magnetic field, B0k.  In this case no space charge is produced and we find 
that the electric field calculated using  Bv ×  is ( )ki xz +−Ω 0B5.0 , while using ( )Av ∇⋅− gives the same spatial form of electric field, but with half the magnitude. 

2) A uniform conductive sphere of radius, a , rotates about the z-axis in a longitudinal magnetic field gradient, of strength, G .  In this case a space charge is generated, 
but there should be no induced electric field as ( ) 0=××∇ Bv , and this is confirmed by calculation based on the use of Bv ×  which yields E =0 throughout the sphere. 

However, as ( ) 0≠××∇ AΩ we find that using ( )Av ∇⋅−  incorrectly predicts a finite spatially varying electric field whose magnitude is of order  ΩGa2. 

3) For a more complex geometry a boundary element method (BEM) numerical calculation (incorporating a space charge term) was used to calculate the current 
induced in a head model due to rotation.  In this case only 3 domains were modelled (brain, skull and scalp). A non-uniform magnetic field perpendicular to the y-axis 
has been simulated such that ( )kiB ˆˆ zx +−=   and the head rotates at 1 rad s-1 about the x-

axis.  Two simulations were performed, one using Bv ×  term and the other ( )Av ∇⋅− as 

the electric field driving terms.  Figure 1 shows the magnitudes of current density 
calculated using the two different driving terms.  The overall scaling of the map in Fig 1a 
is double that of Fig 1b and specific locations can be found where the current densities are 
appreciably different in both magnitude and direction in the two maps. 

Conclusions: The use of the vector potential in electromagnetic simulations of motion 
may lead to incorrect values of current density being calculated if the term Ω x A is 
neglected.  This error may be remedied by always using v x B as the driving term for all 
motions in magnetic fields.  It is essential to remember that motion of a conductive body 
in a magnetic field is not equivalent to a stationary body in a moving magnetic field. 
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Figure 1: Modulus of the induced current density in the central xz-plane 
for the scalp-skull-brain system rotating in a uniform static magnetic field 

( )kiB ˆˆ zx +−= , computed using (a) v x B and (b) ( )Av ∇⋅−   
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