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Introduction: In MRI it is often desirable to threshold voxels that contain signal from tissue along with measurement noise from those that contain 
purely measurement noise. Generally this thresholding utilizes only the magnitude portion of the images. Recently methods have been developed that 
utilize both the magnitude and phase for thresholding voxels [1]. This manuscript is an extension of that work and uses the bivariate normality of the 
real and imaginary values with phase coupled means. A likelihood ratio statistic is derived that simplifies to a more familiar form that is F-distributed 
in large samples. In small samples, critical values from Monte Carlo simulation can be used to threshold this statistic with the proper Type I and Type 
II error rates. This method is applied to magnetic resonance susceptibility weighted images (SWI) and shown to produce increased image contrast.  
Theory: In a voxel, the observed complex-valued data can be described as yR=ρcosθ+εR and yI=ρsinθ+εI where yR and yI  are the measurements for 
the real and imaginary parts, εR and εI are the error terms for the real and imaginary parts, while ρ and θ are the population magnitude and phase. 
Assuming that εR and εI are normally distributed with a mean of 0 and variance σ2 [2], the joint probability distribution of the bivariate voxel 
observation (yR,yI) can be found then converted to polar coordinates to find the joint distribution of the observed magnitude and phase (m,φ) [3]. We 
would like to determine if the observed magnitude and phase in a voxel are signal or if they are noise. Given measurements (m1,φ1),…,(mn,φn) from 
p(m,φ) the  likelihood can be determined. Each voxel and its 8 neighbors (n=9) is used to estimate its magnitude and phase with image wrap around. 
This voxel separation procedure can be achieved by testing H0: ρ=0, θ=0 vs H1: ρ>0, θ≠0 with a likelihood ratio test. Under H0 and H1 the MLEs are 
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A formal statistic can be derived from the likelihood ratio and a statistical hypothesis test performed on the population magnitude and phase 

parameters. Applying this procedure here, the test statistic is F=(x1/2)/(x2/2n) where x1=n[( Ry )2+( Iy )2]/σ2  and x2= [ΣyRi+ ΣyIi]/σ
2. Further, one can 

show that x1 and x2 are χ2 distributed with 2 and 2n degrees of freedom. The test statistic denoted by F is found by dividing these by their degrees of 
freedom and taking ratio. Since x1 and x2 are χ2 distributed, E(x1)=2, 
E(x2)=2n, var(x1)=4, var(x2)=4n. The covariance can be found as 
cov(x1,x2)= E(x1·x2)-E(x1)E(x2), where E(x1·x2)=4n+4. The correlation 
between x1 and x2 is now cor(x1,x2)= cov(x1,x2)/(var(x1)var(x2))

½, which is 
1/√n. This correlation tends to zero in large samples, the F statistic 
becomes F distributed and F critical values can be used.  However, critical 
values for small n can be achieved by way of Monte Carlo simulation. 
Results: Susceptibility weighted imaging (SWI) MRI data [4] is used to 
test the noise removal procedure both in magnitude and phase. A SWI 
brain volume was acquired on a 3T Siemens Trio with a matrix size of 
352×512, FOV of 176 mm × 256 mm, an in-plane resolution of 0.5×0.5 
mm2, TR=26 ms, TE= 15 ms, and flip angle (FA) = 11o [5]. 

The map of these F statistics is presented in Fig. 1 and a histogram is 
presented in Fig. 2. Inset in Figure 2 is Table 1 containing significance 
values α and corresponding critical values F

α. for n=9. The F statistic map in Fig. 1 is 
thresholded with the critical values in Table 2 for α = 0.05, and 0.05/512/352. A zero-one 
mask is produced from the thresholded F statistics then applied to the original magnitude and 
phase images. Thresholded original observed images are presented in Fig. 3. The magnitude 
and phase of thresholded voxels are set to zero but for display the thresholded phase voxel 
values are set to –π. In he top row of Fig. 3 the images are thresholded at F=2.8102 while for 
the bottom row the images are thresholded at F=7.7575. A vertical line can be drawn in Fig. 2 
for each of these threshold values. In Fig. 2, it is obvious that there are F statistic values from 
two different distributions. The first distribution is for large values of the F statistic 
(corresponding to large magnitude and or phase voxels) that tapers for smaller F statistic 
values. The second distribution is on the smaller side for smaller F statistic values 
(corresponding to small magnitude and or phase voxels) that tapers for larger F statistic 
values. Note in Fig. 3 that as the false positive rate decreases from the top row to the bottom 
row, the number of voxels outside of the head decreases and more voxels within the head are 
also eliminated. This phenomenon is due to the relationship between Type I and Type II error 
rates. It is apparent that the magnitude image in Fig. 3 bottom row shows similar anatomy to 
the phase image in Fig. 3 bottom row indicating similar biological information. 
Discussion: A magnitude and phase statistical thresholding procedure based upon a likelihood 
ratio test was presented. It was shown through Monte Carlo simulation that this method 
operates according to its theoretical statistical properties in terms of both false positives and 
false negatives. This statistical thresholding method was successfully applied to real human 
SWI data and shown to produce increased image contrast by eliminating false positives. It can 
also be seen that this new approach is more robust to variations in phase caused by unwanted field inhomogeneity effects. 
References: 1. Pandian D, et al., 2008. JMRI 28:727-735. 2. Macovski A, 1998. MRI 38:494-497. 3. Rowe DB, Logan BR, 2004. NIMG 23:1078-
1092. 4. Haacke EM, et al., 2004. MRM 52:612-618. 5. Haacke EM, et al., 1999. John Wiley and Sons.  
Support: Funded in part by EB007827 and EB000215.  
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Figure 1: F statistic map. Figure 2:  Computed F statistic histogram. 
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Figure 3: Thresholded magnitude and phase images. 

T
able 

1: 
S

ignificance 
levels and critical values. 

α Fα 
.05 2.8102 
.01 3.9377 
.001 5.1991 
.0001 6.1512 
.00001 6.8678 
.000001 7.3911 
.05/256/256 7.5627 
.05/512/352 7.5869 
.05/512/384 7.7051 
.05/512/512 7.7575 
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