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Abstract 
An accurate method for T2-weighted MRI segmentation according to tissue transversal magnetization decay rates is presented. By means of a sequence of geometric 
image filters a classification of the pixels’ intensity decay curves is provided. This can be done through a double strategy: First a log-convexity filter is applied in order 
to regularize image intensity decay by adjusting its geometrical properties to those that are expected from noiseless data, i.e., monotonous and convex behavior. In doing 
so, image noise is somewhat filtered and controlled. Second a curve fitting by a suitable de Prony pseudo interpolating filter and a Montecarlo-Vandermonde robustness 
filter is performed. Decay rate distributions are obtained and tissue classification is performed by means of the determination of principal decay rates or decay modes 
using a suitable mathematical morphology operator, i.e., watershed or similar. Image segmentation is performed by linear regression analysis on a pixel by pixel basis 
assuming that the pixel intensity decay is composed by a linear superposition of the decay modes previously obtained from the decay rate distribution function. The 
main advantage of the proposed multi-strategy approach rests in the accuracy and speed of calculation with respect to other methods such as Inverse Laplace Transform 
algorithm or Vandermonde like equations. The method could be easily extended to any exponentially decaying set of images such as diffusion-weighted MRI. 
Introduction 
In T2-weighted MRI, image intensity can be acquired at equally spaced echo times, TE, using a Carr-Purcell-Meiboom-Gill sequence. Image intensity exhibits a decay 
curve f(t) whose physical behavior can be modeled by a finite exponential sum ���� � ∑ ���
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���
 . On each term ���

����, the rate of intensity decay 
� corresponds to 
a particular tissue type, �� is the proportion of the i-th tissue and m is the number of different tissues that can be (theoretically) detected for this single pixel. Since only a 
finite number of echoes is recovered, then for each pixel a polygonal curve g, whose vertices should belong to the curve corresponding to f, is obtained. Nevertheless, 
due to noise there is always a difference between the theoretical model and real data. For instance, given a MRI of a homogeneous tissue (i.e. only one relaxation rate) 
the histogram of intensities at a single echo time has a Rician probability distribution. On the other hand, noise along the polygonal curve g for the same pixel presents a 
Gaussian like probability distribution function. 
Methods 
Usual methods are quite unsatisfactory. Inverse Laplace transform method [3,4], although it is very robust and manages image noise appropriately, it is rather slow and 
in consequence not applicable to image segmentation on a pixel by pixel basis. The other known method involves the resolution of overdetermined Vandermonde 
systems [1,2], it is faster and accurate but it takes a considerable amount of computing resources [1]. An even faster approach to find the solutions was proposed [5], 
based on a method developed by de Prony [6], but it appears to be very sensitive to image noise and extremely unstable if the number of exponential decays, m is high. 

To overcome this problem, a log-convex regularization of the data is proposed to 
determine a tolerance band as a polygonal approximant of g. Afterwards, the de 
Prony interpolation method [5] revealed to be not only fast but also accurate and 
quite plausible, i.e., the relaxation rate distribution function appear to be a 
multimodal one that fitted, in most of the cases, the usual clinical criteria. In 
Figure 1, some relaxation distribution functions are shown. About a 5 % of the 
pixels for which the de Prony method was applied did not yield a good 
approximation of g. For these noisy pixels a low dimensional Vandermonde-
Montecarlo equation system (m ≤ 3) was applied. We also compared the de Prony 
and Vandermonde-Montecarlo methods as predictors of m [2,7]. Once the 
relaxation rate distribution function is obtained, different relaxation modes can be 
extracted from it and used for image segmentation. 
Results and Conclusions 
In Figure 2 some segmented images are shown. Based on these results it can be 
concluded that the proposed multi-strategy method: data regularization by means 

of a log-convex filter that adjusts the geometry of data points to the behavior of noiseless data, de Prony method to determine relaxation rates and combination with 
Vandermonde equations to fit to experimental data (including for some noisy pixels Vandermonde-Montecarlo) and use of the obtained decay rate distribution to select 
decay modes and classify tissues accordingly, provides a reliable method for image segmentation applicable not only to T2-weighted MRI but also to diffusion-weighted 
MRI. Further improvement is possible by combination with other tools of mathematical morphology [8] and computational acceleration, particularly in Vandermonde 
method [9] and should be taken into account in the future. 
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Fig. 2. Segmented images: (a) Glioblastoma multiforme, (b) Fibrillar 
Astrocytoma. Colors are assigned as follows: blue, cerebrospinal fluid, 
necrosis or edema tissue, red, tumor tissue and green, normal or 
unaffected tissue. 
 
 
 
 
 
 
 

Fig. 1. Sample distribution functions for different ROI’s in (a) Glioblastoma multiforme, (b) 
Fibrillar Astrocytoma. 
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