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INTRODUCTION
Phase-constrained partial Fourier (PF) reconstruction techniques employ prior knowledge of the image phase to significantly reduce k-space
sampling requirements, and have typically been evaluated either using empirical results or qualitatively through analogy to the context of smooth
phase and infinite sampling [1,2]. In this work, we show that the resolution and noise properties of linear PF reconstruction can be characterized in
terms of spatial response functions (SRFs) and interference response functions (IRFs). These characterizations can be used to simplify the selection
of reconstruction parameters.
THEORY
Data collection in standard MRI can be modeled as Eq. (1), where p(X) is Equations
the desired imazge, and the 7, represent white Gaussian noise perturbations | (1) d(k,,) =] P(X) exp(-i2m Ky X)dX + 77, m=1,.... M
with variance G". In addition to the data, we have prior knowled_ge that p(x) (2) poX) = p(X) exp(-i p(X))
3pprox1mately has. phase ¢(X), such that the phase corrected image Pp(X) (3) reallpprecon(y)] = Z an(y) realld(Ky)]
efined in Eq. (2) is almost purely real. In linear PF reconstruction methods .
. . . . . + X by(y) imag[d(K,,)]
(including homodyne reconstruction [3] and matrix inversion methods [4,5]), -
an estimate of pp(X) is computed as a linear combination of the acquired data as @ imag[pprecon(Y)] = Z Cu(y) real[d_(km)]
in Egs. (3) and (4), where a,(y), bu(y), Cu(Y), and dy(y) are the (spatially- + X diy(y) imag[d(ky)]
varying) real-valued linear reconstruction coefficients. Using Eqs. (1) and (2), | (5) realppecon(Y)] = ] real[p,(X)] SRF,(x) dx

Eq. (3) can be rewritten as Eq. (5) in terms of the true image, the SRF, the IRF, + J imag[py(X)] IRF,(X) dX + noise(y)
and a noise perturbation. The SRF, IRF, and noise perturbation terms are | (6) SRE(X) = T a(y) cos[p(X)- 27 KX

defined in Eqgs. (6)-(8). Similar expressions exist for the SRF and IRF for + X bu(y) sin[p(X)- 271 KpeX]

imag[pp recon(Y)] in terms of the C,,(y), and dy,(y) coefficients. (7) IRE,(X) = 2 -an(y) sin[p(x)- 27 ko]

Equation (5) describes the relationship between the reconstructed image
and the true underlying image, which is an important characterization to have. - + 2 bu(y) cos[p(X)- 2z kf"'x]
The SRF can be used to quantify the resolution of the image, while the IRF can | (8) noise(y) = X an(y) reallsm] + X bu(y) imag[m]
be used to assess the possible perturbation due to phase inconsistency. variance[noise(y)] = (67/2) Z [|an(y)I’ + [bu(y)’]
RESULTS

We have observed that in the presence of smooth phase variation, the SRFs and IRFs for standard linear PF reconstruction methods are fairly
consistent throughout the FOV. Figure 1 shows a simulated example (5/8™ PF acquisition, with smoothly-varying phase constraints) where
homodyne reconstruction [3] and standard Tikhonov-regularized PF reconstruction [4,5] SRFs and IRFs are compared with a regularized PF
reconstruction that incorporates a quadratic penalty on the finite differences of the image to promote spatial smoothness. Also see Fig. 2.
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Figure 2. Standard PF (left) and smoothness-
regularized (right) PF reconstructions of a 5/8" PF
EPI acquisition. The smoothness regularized

reconstruction  utilized anatomical information

o o - derived from a sequence of coregistered diffusion-

IRF \n R ] weighted images, as in [6].

WWNVVMW The standard reconstruction has resolution on the
- - - order of (2.17 mm)® in-plane, while the regularized
reconstruction has resolution on the order of (2.36

mm)® in-plane in smooth regions of the image, and 2

- - - times the SNR of the standard reconstruction.
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Figure 1. SRFs and IRFs from simulated 5/8" PF data.

The regularization parameters were chosen to achieve a desired SNR/resolution trade-off. The achievable SNR improvement for standard
Tikhonov regularization seems limited, while it is unlimited for smoothness regularization. Use of the smoothness prior has an effect similar to
apodization, where truncation artifacts are reduced, the SNR improves, and the resolution is slightly degraded. Characterization in terms of the SRF
provides a new mechanism for selecting regularization parameters, and provides more insight than previous methods which use the L-curve [5].
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