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INTRODUCTION 
 Phase-constrained partial Fourier (PF) reconstruction techniques employ prior knowledge of the image phase to significantly reduce k-space 
sampling requirements, and have typically been evaluated either using empirical results or qualitatively through analogy to the context of smooth 
phase and infinite sampling [1,2].  In this work, we show that the resolution and noise properties of linear PF reconstruction can be characterized in 
terms of spatial response functions (SRFs) and interference response functions (IRFs).  These characterizations can be used to simplify the selection 
of reconstruction parameters. 
THEORY 
 Data collection in standard MRI can be modeled as Eq. (1), where ρ(x) is 
the desired image, and the ηm represent white Gaussian noise perturbations 
with variance σ2.  In addition to the data, we have prior knowledge that ρ(x) 
approximately has phase φ(x), such that the phase corrected image ρp(x) 
defined in Eq. (2) is almost purely real.  In linear PF reconstruction methods 
(including homodyne reconstruction [3] and matrix inversion methods [4,5]), 
an estimate of ρp(x) is computed as a linear combination of the acquired data as 
in Eqs. (3) and (4), where am(y), bm(y), cm(y), and dm(y) are the (spatially-
varying) real-valued linear reconstruction coefficients.  Using Eqs. (1) and (2), 
Eq. (3) can be rewritten as Eq. (5) in terms of the true image, the SRF, the IRF, 
and a noise perturbation.  The SRF, IRF, and noise perturbation terms are 
defined in Eqs. (6)-(8).  Similar expressions exist for the SRF and IRF for 
imag[ρp,recon(y)] in terms of the cm(y), and dm(y) coefficients. 
 Equation (5) describes the relationship between the reconstructed image 
and the true underlying image, which is an important characterization to have.  
The SRF can be used to quantify the resolution of the image, while the IRF can 
be used to assess the possible perturbation due to phase inconsistency. 
RESULTS 
 We have observed that in the presence of smooth phase variation, the SRFs and IRFs for standard linear PF reconstruction methods are fairly 
consistent throughout the FOV.  Figure 1 shows a simulated example (5/8th PF acquisition, with smoothly-varying phase constraints) where 
homodyne reconstruction [3] and standard Tikhonov-regularized PF reconstruction [4,5] SRFs and IRFs are compared with a regularized PF 
reconstruction that incorporates a quadratic penalty on the finite differences of the image to promote spatial smoothness.   Also see Fig. 2. 
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Figure 2.  Standard PF (left) and smoothness-
regularized (right) PF reconstructions of a 5/8th PF 
EPI acquisition.  The smoothness regularized 
reconstruction utilized anatomical information 
derived from a sequence of coregistered diffusion-
weighted images, as in [6]. 
   The standard reconstruction has resolution on the 
order of (2.17 mm)2 in-plane, while the regularized 
reconstruction has resolution on the order of (2.36 
mm)2 in-plane in smooth regions of the image, and 2 
times the SNR of the standard reconstruction. 
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Figure 1.  SRFs and IRFs from simulated 5/8th PF data.  

 The regularization parameters were chosen to achieve a desired SNR/resolution trade-off.  The achievable SNR improvement for standard 
Tikhonov regularization seems limited, while it is unlimited for smoothness regularization.  Use of the smoothness prior has an effect similar to 
apodization, where truncation artifacts are reduced, the SNR improves, and the resolution is slightly degraded.  Characterization in terms of the SRF 
provides a new mechanism for selecting regularization parameters, and provides more insight than previous methods which use the L-curve [5]. 
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Equations  
(1)   d(km) = ∫ ρ(x) exp(-i2π km·x)dx + ηm,  m = 1,…,M 
(2)   ρp(x) =  ρ(x) exp(-i φ(x)) 
(3)   real[ρp,recon(y)] = Σ am(y) real[d(km)] 
                                      +  Σ bm(y) imag[d(km)] 
(4)   imag[ρp,recon(y)] = Σ cm(y) real[d(km)]  
                                         +  Σ dm(y) imag[d(km)] 
(5)   real[ρp,recon(y)] = ∫ real[ρp(x)] SRFy(x) dx  
                                     + ∫ imag[ρp(x)] IRFy(x) dx + noise(y) 
(6)   SRFy(x) = Σ am(y) cos[φ(x)- 2π km·x]  
                             +  Σ bm(y)  sin[φ(x)- 2π km·x] 
(7)   IRFy(x) = Σ -am(y) sin[φ(x)- 2π km·x]  
                             +  Σ bm(y) cos[φ(x)- 2π km·x] 
(8)   noise(y) = Σ am(y) real[ηm] +  Σ bm(y) imag[ηm] 
           variance[noise(y)] =  (σ2/2) Σ [|am(y)|2 + |bm(y)|2] 
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