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Introduction  
 Compressed sensing (1) can be combined with image space parallel imaging (SENSE) (2). The image m is typically reconstructed by minimizing an objective 

function 
2

2 1
J(m) Em y m= − + λ Ψ where y is the measured (multicoil) k-space data, E is the coil encoding operator that includes both the B1 receive field for each 

coil and the Fourier operator, Ψ is a transform that produces a compressible function when operating on the image m, and the constant λ is adjusted to balance data 
fidelity and artifact reduction (first and second terms in J).  If λ is chosen too small, uncorrected aliasing remains in the image.  If λ is chosen too large, the image 
appears blurry.  Many methods have been developed to automatically determine the optimal λ (3).  Most are problematic for MRI data because either the assumptions 
are inapplicable or the computational burden is too high.  Here we focus on a simple method called the discrepancy principle that chooses λ based on the size of the first 
term in J, also called the discrepancy term.  A version of this method has been used for GRAPPA regularization (4). 
Methods  

 Let the terms in J be denoted
1

J1 m= Ψ  and
2

2
J2 Em y= − .  A small λ gives small J2, making the reconstructed image consistent with the measured k-space 

data.  In particular, the noise in Em will be consistent with the noise in y, resulting in a noisy image.  Conversely, a larger λ gives smaller J1, reducing aliasing, and 
resulting in a relatively larger J2 with noise in Em that is lower than the noise in y, giving a denoised image.   The discrepancy principle chooses λ large enough to give 
J2 about the same as σ2, the variance of y.  This gives some denoising because the noise in Em is less than the noise in y.  The noise variance σ2 can be easily measured 
using a short acquisition without gradients or RF.  A simple method for finding the optimal λ starts with a λ that is too large.  The image that minimizes J is obtained 
and J2 is computed.  The process terminates if J2 < ασ2 where α ∼ 1, otherwise λ is reduced and the process repeated using the final m from the previous iteration as the 
initial guess for the next one.  One complication is that the coil sensitivity component of E must be estimated from a small number of Nyquist samples near the center of 
k-space.  The low spatial resolution approximation for E can cause Em to differ from y.  A slightly better method is to stop reducing λ when J2 < ε + ασ2 where ε is 
called the model error.  The model error can be estimated by assuming that ε = J2 when λ = 0, solving for m with λ = 0, and then computing J2.  
 A 3T commercial scanner (GE Healthcare, Waukesha, WI) was used to scan a volunteer using both a single channel transmit/receive quadrature head coil and an 
8-channel receive-only head coil with a T1-weighted 2D spin echo pulse sequence.  Fully sampled data were randomly undersampled in the ky direction to simulate 
compressed sensing acquisition. The image was reconstructed by minimizing J using a conjugate gradient (CG) algorithm implemented in MATLAB (The Mathworks, 
Natick, MA).  To estimate ε a fixed total reduction factor of three was used while varying the number of Nyquist lines.  The single channel and 8-channel model errors ε 
were compared for varying numbers of Nyquist lines.  The single channel coil should have very small ε because of the uniform coil sensitivity, and hence differences in 
ε between the two coils should result from the low spatial resolution estimation of E.  To test the discrepancy principle, an optimal λ was first empirically determined.  

The starting λ was roughly 4 times this value, and λ was reduced by 2  after each solution for m.   The solution for m was found using a maximum of 16 CG 
iterations for each value of λ.  A 2D Daubechies-4 wavelet was used for Ψ. 
Results  
 For the single channel coil, with λ = 0, J2 was essentially zero after a single CG iteration, independent of the number of Nyquist lines, indicating that ε is 
negligible for this case as expected.  J2/σ2 for the 8-channel coil is shown in Fig. 1 as a function of the number of Nyquist lines.  For 8 Nyquist lines, J2 is comparable 
to σ2 but decreases as expected as the number of Nyquist lines increases, indicating that coil sensitivity spatial resolution is one source of ε.  The k-space undersampling 
pattern shown in Fig. 2 (3-fold reduction, 32 Nyquist lines) was used to evaluate the discrepancy principle.  The 8-channel coil images are shown with λ = 0 (Fig. 3), 
empirical optimal λ = 1500 (Fig. 4), and discrepancy principle with initial λ = 6000 and final λ = 1500 (Fig. 5).  For the discrepancy principle reconstruction, ε  = 0 and 
α = 1 were used to find the final λ.  Although ε  = 0 and α = 1 gave acceptable results here, in general these would not be the optimal values. 
Conclusions 
 The discrepancy principle is a method for finding optimal regularization parameters for SENSE parallel imaging combined with compressed sensing.  A similar 
approach has been used for GRAPPA parallel imaging.  One source of model error is the low spatial resolution estimation of coil sensitivity.  A sufficient number of 
Nyquist samples for the coil estimate results in negligible model error.  The method currently only works for a single sparsifying transform (single λ).  This is probably 
adequate for most cases, however some images may benefit from two sparsifying transforms.  The method also takes several times longer than the reconstruction time 
for a single λ.  This can be reduced by optimizing the starting λ, the factor for reducing λ after each solution, and the number of CG steps per solution. 
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Figure 1. Effect of Nyquist lines Figure 3. λ = 0 Figure 5. Adaptive λ 
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