

CRAZED signal dependence on correlation distance and sample orientation in rat sciatic nerve

A. S. Kussainov¹, M. D. Does², N. E. Byun³, J. C. Gore^{1,3}, and D. F. Gochberg^{1,3}

¹Physics, Vanderbilt, Nashville, TN, United States, ²Biomedical Engineering, Vanderbilt, Nashville, TN, United States, ³Radiology, Vanderbilt, Nashville, TN, United States

Introduction: Conventional magnetic resonance imaging is typically limited to resolutions of 100's of microns in small animals and to millimeters in humans. No single conventional magnetic resonance method probes both the micron and millimeter distance scales or an intermediate scale ($< 50\text{--}300\ \mu\text{m}$) between diffusion measures and direct imaging. The CRAZED [1] pulse sequence has a structural sensitivity determined by applied gradients. Specifically, the correlation distance $d_c = \pi/\gamma GT$ dictates the distance scale of the signal sensitivity to magnetization variations (see Figure 1). In this work, we address the issues of CRAZED signal dependence on sample orientation and the gradient induced correlation distance in sciatic nerve and cylindrical phantoms with the goal of determining what size information can be obtained unambiguously from the CRAZED signal.

Methods: Two samples were measured: a cylindrical doped water sample and ex vivo rat sciatic nerve. A spectroscopic CRAZED sequence was implemented with $dc = [4002\ 1199\ 359.7\ 107.9\ 32.30\ 9.786]\ \mu\text{m}$. Both samples were rotated over a 90° arc in 10° steps. Histology and electron microscopy were performed to assess the underlying structures of the sciatic nerve and to determine the extent of degeneration during the CRAZED measurements. The measurements on the water sample signal were also numerically simulated.

Results: Figure 2 illustrates the histology results, indicating micro-anatomical structures at roughly the $10\ \mu\text{m}$ and $300\text{--}400\ \mu\text{m}$ scales, and that these structures are preserved during the measurement. Figure 3 plots the most important CRAZED results: that the signal dependence on sample orientation and gradient direction for a nerve when $dc = 10\ \mu\text{m}$ and $360\ \mu\text{m}$ matches the simulations of a cylinder when $dc = \text{the cylinder diameter}$.

Discussion: The results for the sciatic nerve have characteristics indicative of cylinders at both the ten and hundreds of micrometers distance scales, reflecting both axon and the tibial/peroneal fascicle structures that compose the nerve. These results support the view that CRAZED methods are able to probe a range of distance scales not available in other magnetic resonance methods.

Acknowledgements: This work was funded from NIH grants EB001452 (Gochberg) and EB000214 (Gore). We also thank E.A. Woodruff III for histology results and John Fellenstein for construction of the sample holder.

References: 1. WS Warren et al., Science, 262:2005–2009, 1993.

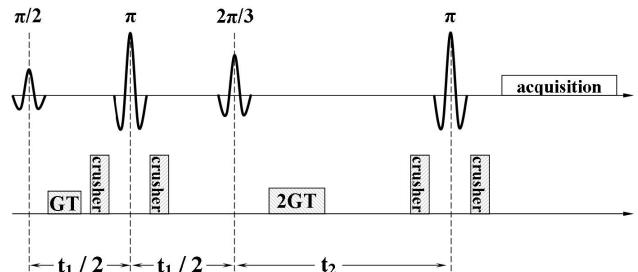


Figure 1: CRAZED pulse sequence

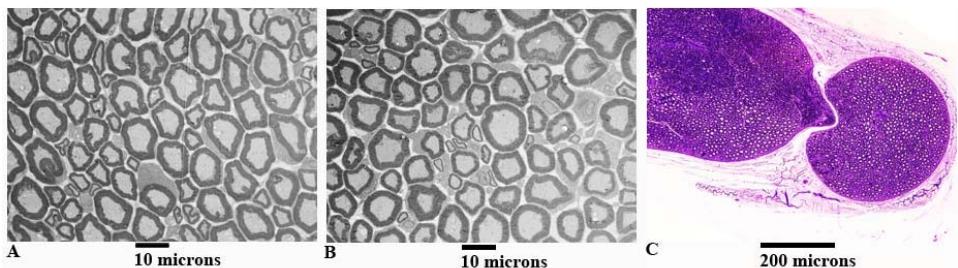


Figure 2: Histology of rat sciatic nerve cross sections. (a), (b) Electron micrographs reveal the $10\ \mu\text{m}$ structures corresponding to myelinated axons. There is no discernible difference in fiber structures between (a) sciatic nerve fixed immediately upon dissection or (b) fixed after 3 hours post-excision. (c) Light microscopy of toluidine blue stained sciatic nerve show the peroneal (smaller) and tibial (larger) fascicles that make up the sciatic nerve.

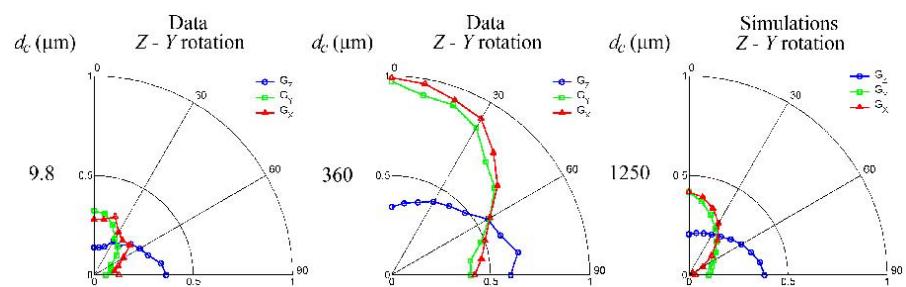


Figure 3: Nerve sample Z - Y rotation data for $dc = 9.8$ and $360\ \mu\text{m}$. For comparison a numerical simulation of a homogeneous cylinder of diameter $1250\ \mu\text{m}$ and $dc = 1250\ \mu\text{m}$ is plotted as well. The similar shapes in all three cases indicates cylindrical structures in nerve with diameters of roughly $10\ \mu\text{m}$ and $360\ \mu\text{m}$.