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Introduction 
The direct action of the magnetic field generated by the macroscopic magnetization of a nuclear spin system in a static field B0 on the evolution of the 
ensemble was first observed and quantitatively understood in experiments on condensed 3He by Deville et al. [1]. The results of these experiments 
could be explained by the presence of an additional classical magnetic mean–field generated by the macroscopic magnetization and “seen” by each 
spin in the sample. This so–called “demagnetizing field” or “distant dipolar field” (DDF) leads to similar effects in experiments on water at room 
temperature observed 11 years later by Bowtell et al. [2]. The DDF is given by 
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where ez = unit vector in the direction of the static field B0 = (0,0,B0), θ  is the angle between the internuclear vector r–r′ and B0, μ0 = vacuum 
permeability, Mz(r′) = longitudinal component of the magnetization M(r′) at point r′. The strength of the DDF depends on the geometry of the 
sample, on the thermal magnetization M0 and its spatial distribution. In particular, if the magnetization is modulated by a static magnetic field 
gradient (strength G, duration τ), the DDF is enhanced and exercises a significant influence on the temporal evolution of the spin system [1,2]. To our 
knowledge, pictorial representations of the DDF have been published for homogenously magnetized samples with spherical [3], ellipsoidal [4], and 
cylindrical [5] shapes. In this study, we performed numerical calculations to obtain 2D representations of the DDF in various geometries. 
Material and Methods 
The DDF was calculated by solving eq. (1) for each point of a 128×128 grid in the x–z plane. We assume perfect vacuum outside the samples and 
neglect susceptibility effects. Three different cases were considered: (i) cylinder and sphere homogeneously magnetized with M0 = 0.02257 A/m 
(H2O at room temperature, spectrometer frequency = 300.1 MHz, i.e., B0 = 7.01 T), (ii) sphere with spatial magnetization distribution after the second 
rf pulse of the CRAZED–type preparation [6]: 90° pulse – z–gradient – 90° pulse, and (iii) sphere with the same preparation as in (ii) except the 
gradient is applied at the “magic angle” θ ≈ 54.7°. All integrations were done numerically by using the Maple® 11 software package on a PC 
equipped with 1 GB RAM and Intel Pentium® 4 processor operating at 3 GHz. 

Results and Discussion 
Figures (a–c) show the frequency offset ΔνDDF(x,z) due to the 
DDF for a homogeneously magnetized sphere with diameter 
Ds = 1 cm (a), cylinder with width and height of 1 cm (b) and 
cylinder with diameter of 1 cm and height of 4 cm (c). (d–f) 
Frequency offset ΔνDDF(x,z) resulting from the CRAZED–type 
preparation (ii). The wavelength of the magnetization helix 
λ = 2π/(γGτ) was set to λ = Ds (d), λ = (1/5)Ds (e) and 
λ = (1/10)Ds (f). (g–i) The same preparation as in (d–f), but the 
gradient is now applied at the “magic angle”. (j) Illustration of 
the “correlation distance” d = π/(γGτ). The derivative dBd,z(r′)/dr′ 
gives the field contributions as a function of the distance that lead 
to DDF “seen” by a spin at the centre of the sphere. (k) Field 
contributions dBd,z per distance along the dashed line (z′ = 0) in 
Fig. (j). Analysis of Figures j and k demonstrates that the most 
important contribution to the DDF at the centre of the sphere 
originates from magnetization in a spherical shell at a distance of 
0.08 cm, which is in the order of the “correlation distance” 
d = λ/2 = 0.1 cm. 
These numerical calculations show that the strength and the 
spatial structure of the DDF depend on the geometry of the 
sample and on the spatial distribution of the magnetization within 
the sample. The calculations verify a distance dependency. The 
main contribution to the total DDF originates from the 
magnetization within a spherical shell with approximately the 
distance d. This shell has a significant extension and therefore the 
correlation distance d should be considered as an average rather 
than an exact distance. Our results are consistent with the 
previous published 1D representation given in Ref. [6]. In the 
next step our simulation will be used to find spatial 
magnetization distributions which result in an enhanced DDF. 
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