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Introduction: Quantitative T, (qT,) enables scientists to discern tissue microcompartments by measuring multiple T, decays using a
multiecho acquisition [1]. This technique is sensitive to myelin content [2] and has uncovered previously undetected
microcompartments in MS and PKU pathological tissue [3]. We show that traditional qT, analysis using a smoothing constraint
underestimates the myelin water fraction (MWF) as the signal to noise ration (SNR) decreases. Furthermore, the variance of the
measurement cannot be determined for a single ROI analysis using traditional qT,, so multiple subjects are needed. In order to use qT,
clinically, however, the variance of a single ROI measurement is required to determine if, and to what degree, the MWF deviates from
normal. We present a robust approach to qT, that more accurately estimates the MWF with decreasing SNR, provides error bounds on
a single ROI, and has confidence intervals on the T, distribution.

Methods. Synthetic Decay Data — This portion of the study characterizes how the measured MWEF is affected using regularized and
non-regularized fitting routines at various SNRs. Simulations are performed using a rat white matter multiexponential model, where
MWEF =7 %, using 1000 realizations of Gaussian noise at SNRs 1000, 400, 200, 100, and 50. Gaussian noise is used to ensure no bias
is introduced from a Rician noise-floor that can be misinterpreted as a DC offset in the decay data, potentially causing a source of
MWEF underestimation. These data are analyzed by creating the T, distribution with and without a smoothing constraint. The T,
distributions are generated  using a
multiexponential basis set with intensities that

SNR 1000 400 200 100 50
R . . NNLS 7.094 (0.001) 7.25(0.03) 7.37(0.05) 7.44 (0.08) 7.4 (0.1)
are determined using NNLS [4]. The smoothing | \n1s | 6807 (0.008)  6.61(0.02)  6.16(0.04)  5.06(0.07) 42 (0.1)
constraint, used for rNNL.S, consists of allowing Table 1: MWFs (in %, st-err reported) from 1000 realizations of Gaussian noise at various
the curvature of the fit to vary such that SNR levels. The true MWF is 7 %. The two cases shown are non-regularized and

l.lemin2< X2< 1.015)(,mm2 [4]. regularized solutions as NNLS and rNNLS, respectively.

Rat Data — The second portion of this study compares analysis workflows.

The traditional analysis workflow, called regularized ROI NNLS (rrNNLS), rrNNLS rmNNLS nmNNLS
consists of drawing an ROI, averaging the decay values together within the MWF (%) | 4.89(0.61) 5.08(0.31) 6.64 (0.40)F

Table 2: MWFs from in vivo rat corpus callosum using
different analysis techniques. fIndicates significant difference
from all other measured values.

ROI, creating a T, distribution with smoothing, and determining MWEF. The
proposed workflow consists of determining the T, distribution for each
voxel, drawing an ROI, averaging T, distributions together, and calculating
MWEFs with variance estimates. The multi-voxel approach

can be conducted two ways, with regularization (rmNNLS) i | '. :m:ﬁs

[5] or without (nmNNLS). Single slice, 3ms spaced 128 L —l

multiecho rat in vivo data at 9.4-T data were collected and 028

rrNNLS, rmNNLS, and nmNNLS are performed on data

resulting from an ROI drawn in the corpus callosum using , o015t 1

AnalyzeNNLS [6]. The resulting MWFs were compared °

using a 1-factor ANOVA with Student-Newman-Keuls post- D |

hoc testing where p < 0.05 is considered significant.

Results: Synthetic Decay Data - NNLS analysis 005

overestimates the true MWEF as SNR decreases, while rNNLS p
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underestimates the MWF, as shown in Table 1. However, the
magnitude difference from the true MWF is less for NNLS :
compared to rNNLS at any given SNR. . Fig 1: T, distributions from rrfNNLS and nmNNLS from the same scan.
Rat Data — The nmNNLS workflow provides the largest  paghed lines represent the 95 % confidence intervals for the T,
MWEF and is statistically different from rrNNLS and rmNNLS  distribution amplitudes. The gray region represents the T, times used to
workflows, which are not statistically different from each calculate the MWF.

other, as shown in Table 2. Fig 1 shows the T, distributions

using rrNNLS and nmNNLS analysis techniques. The 95 % confidence interval is shown with the dashed lines, and the gray region
represents the T, times used to determine the MWF.

Discussion: The synthetic and rat data both have the highest MWFs when using non-regularized NNLS. A benefit of using the
rmNNLS and nmNNLS analysis workflows is that 95% confidence intervals are placed on the T, distributions, allowing estimates of
variance for MWF using a single ROI, allowing individual time-course studies and comparison with healthy peers. Since rmNNLS is
based on rNNLS, which suffers from greater difference from the true value in the synthetic data than NNLS, we suggest that nmNNLS
is more robust and should be used for qT, analysis.
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