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Introduction: There are many parallel imaging methods for reconstructing non-Cartesian data, but they typically exhibit 
modest performance, restricted applicability, or significant computational time even for 2D applications.  This work 
presents a simple method for parallel imaging that makes few assumptions, is robust, and computationally fast. 
Method:  As illustrated in Fig. 1, this method iteratively (I) enforces coil consistency in image space and (II) reinserts the 
collected data.  Coil consistency is enforced by combining coil images (using conjugate coil sensitivity maps to minimize 
noise sensitivity) (1,2), then multiplying the combined image by coil sensitivity maps to produce new coil images fn,i.  Data 
consistency is enforced by effectively gridding together the original spiral data ds and the previous iteration’s Cartesian 
data fn,i, i.e. Gn+1,i = WS DS + WC Fn,i.  The sampling density weights WC and WS are calculated together using the method 
of Pipe (3,4), with the input relative weighting for spiral data (WS) 10x higher than that for the Cartesian data (WS).  This 
effectively replaces the Cartesian data with collected data.  These two data (d1 = WS DS after gridding, FFT, and rolloff-
correction, and the transform of Wc*Fn,i) can then be added together in image space, since gridding and the FFT are linear 
operations.  The Cartesian data forgo gridding and rolloff correction, and the collected spiral data (d1) are processed just 
once.  Thus this parallel imaging method requires only 2N two-dimensional FFT’s per iteration (N coils), and little other 
significant calculation (e.g. no additional gridding/degridding per iteration). 

Fig. 1. (a) Flowchart for proposed iterative parallel imaging method.  Images are color-coded based on phase, using the colorwheel at 
the bottom. In the first stage, images gn,i are multiplied by the conjugate cn* of coil sensitivity maps, summed across coils, then 
multiplied by the same (not conjugated) coil sensitivity maps cn.  This enforces consistency with the coils.  In the second stage, data fn,i 
are transformed to k-space, multiplied by a weighting function Wc to remove data where it was collected, transformed back to image 
space, and added to the (appropriately weighted) collected data d1.  This enforces consistency with the collected data. Results are 
shown on the right for data synthesized on a linearly undersampled 2D spiral trajectory (1/2 Nyquist interleafs, same ADC) from (b) 
original image reconstructed using (c) simple rms weighting and the proposed algorithm after (d) 2 and (e) 8 iterations. 

Conclusions:  This is a robust, fast method, and is extendible to 3D NonCartesian imaging methods with reasonable 
computational time (2Nx3D FFT’s per iteration).  It is general, only requiring B1 maps and sampling coordinates.  This 
work resembles other iterative methods that re-insert data (e.g. 5,6); one of the significant contributions of this work is the 
illustration that Non-Cartesian data can be reinserted each iteration without the need for degridding/gridding operations. 
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