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INTRODUCTION Synthesizing unsampled signal from sampled signals is an ultimate goal in parallel MR k-space reconstruction. Most algorithms like GRAPPA
[1] achieve the reconstruction with global linear regression (GLR). They all make a common assumption that unsampled signals can be explained linearly and globally
by sampled one. Theoretically, we reveal that the relationship between missing and sampled data is correlated to coil sensitivity and noise and, therefore, the global
assumption is invalid. To better model such relationship, we locally fit the linear function within subregions on a mathematically sound framework, Geographically
Weighted Regression (GWR) [2]. Instead of using a single set of complex weights for the reconstruction, this novel approach uses multiple sets. Extra computation
efforts for the partitioning and addition calibration in this new algorithm are negligible. Over 1000 images of simulated and acquired MR data with different image
contents and different acquisition schemes including MR tagging data were tested. A perceptual difference model (Case-PDM) [3] was used to quantitatively evaluate
the image quality and to optimize the parameters of the new algorithm.

THEORY AND METHODS Solving the complex weights is an ill-posed problem. GRAPPA adopts the Moore-Penrose pseudo-inverse to find a partial

solution, A = (ST'S,)'SF8* (1), where A" is a column vector whose elements denoting complex weights for the j* coil and m" missing line ( je[LL], L is the number

of coils; me[l,A-1], A is the accelerating factor), §‘J“°s is a column vector whose elements enumerating the ACS signals, S, is a matrix that tabulates ACS data

covered by the sliding complex weights kernel. This procedure is equivalent to GLR on the ACS signals. It implies the original GRAPPA reconstruction assumes a
single set of complex weights is sufficient. To better understand the theoretical meaning of the complex weights, we have derived their relationship to coil sensitivity
data by the convolution theorem. From the study, we found that the complex weights are correlated to both coil sensitivity and noise. Therefore, they should not be
constant over the k-space and are non-stationary. We suggest the complex weights should be localized—varied with the acquired k-space data—according to the spatial
analysis theory [4]. This leads to the development of the novel comprehensive GRAPPA reconstruction algorithm. We introduced GWR, an adequate framework to deal
with spatial non-stationarity, to GRAPPA. On the GWR framework, complex weights are continuous functions in a space Q. The Q space is defined by a 1xL vector
i, whose I"™ element is the average signal magnitude within the kernel acquired by the I"™ coil and where i denotes location. To reflect this change, Eq. (1) is rewritten

to (i) = (S W, (1)S,) " ST W, ()57 (2), where W (i) is a diagonal matrix containing locality weights that help model the underlying non-stationarity. Elements of W (i)
are normalized inverse distance between 7, and those u of the acquired ACS signals. Regarding the reconstruction of missing signal at (ky, ky, |, m), we calculate x at

(Ky, Ky, |, m) and the diagonal matrix W, at (K, Ky, |, m), then we obtain the complex weights with Eq. (2). As a final step, we reconstruct the missing data in a way
identical to original GRAPPA. Our algorithm can be speeded by partitioning Q space into P clusters with k-means algorithm. The index i in Eq. (2) is changed to p
denoting the complex weight computation of the p* cluster.

Our algorithm was tested with both phantom and in vivo MR data of different image contents and different acquisition schemes (including MR tagging data).
We also investigated the important factors that affect the optimal number of clusters Py based upon Case-PDM.
RESUL TS To demonstrate the robustness of our algorithm, all MR images were reconstructed without any ACS integrated into final reconstructions, even in some
cases where combinable ACS were available. Experimental results showed that Comprehensive GRAPPA with 2 clusters P = 2 gave reconstruction with significantly
better image quality than the original algorithm, by both PDM score and visual inspection in all head-to-head comparisons amongst all test images. More clusters (P > 2)
used will produce higher image quality until it saturates at P = Ppey. Simulation results show that the Py is dependent on the number of coil elements, type of imaged
object and sampling conditions, but not on the coil sensitivity and noise level.
CONCLUSION The proposed comprehensive GRAPPA reconstruction algorithm with GWR is a generalization of GLR-based GRAPPA. With a single cluster, our
algorithm reduces to the original implementation. We found that a few clusters (say, 2) are sufficient enough to give significantly better reconstruction than the original
GRAPPA in terms of image quality. From the simulation, we know that there are three factors that affect the optimal number of clusters used in the algorithm. They are
imaged object type, number of channels and acceleration factor. Although there may not have a universal optimal number of clusters, one can optimize it according to
scanning protocols for clinical imaging in which those factors are invariant. If optimization is not possible, as a rule of thumb, we suggest using at least two clusters for
the reconstruction. Case-PDM, an objective measure to quantify human perception on image quality, is an invaluable metric in this work; we used it to optimize MR
reconstruction parameters and determine the dependent factors of the optimal cluster number. Moreover, accuracy of GWR can be boosted with filtering local outliers
[5] and other regularization methods [6] that are developed for GLR. We expect that the proposed novel reconstruction framework can be extended to other parallel
image reconstruction algorithms such as SENSE, SMASH and PARS. Also, our algorithm is ready for dynamic MR imaging, especially cardiac MR imaging with spin
tagging.
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Figure Algorithm demonstration for a 4-
chnannel MR brain data set (full-sampled
data size = 256x256x4). For the under-
sampled data (AF = 3, ACS = 30), more
clusters used can improve image quality of
GRAPPA reconstruction until the image
quality saturates at P = 5, as demonstrated
by a result in (a). Letters above the circles
correspond to images reconstructed from
the same data with different number of
clusters. (b) is a reference image created
from full k-space data with a PDM score
of zero. Original GRAPPA is in the case of

PDM Score

o kN w s n e N ® e
d
I
|
?
|
?
|
o

5 6
Number of Clusters (P)

(a) one cluster. (g) demonstrates the
“ partitioned Q2 space of ACS with different
color denoting each of the 5 clusters.
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