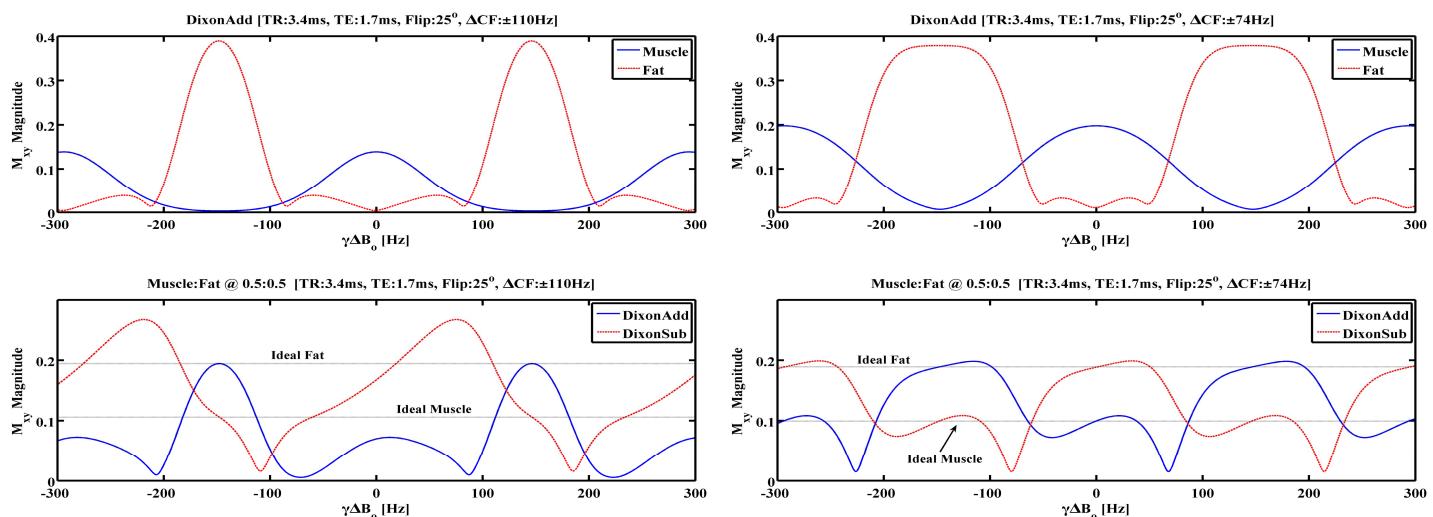


Dixon bSSFP in the Presence of B_0 Inhomogeneities

M. L. Lauzon^{1,2}, R. B. Stafford^{2,3}, M. Sabati⁴, and R. Frayne^{1,2}

¹Radiology, University of Calgary, Calgary, AB, Canada, ²Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Calgary, AB, Canada, ³Physics and Astronomy, University of Calgary, Calgary, AB, Canada, ⁴Radiology, University of Miami, Miami, FL, United States


Introduction: The two-point, fat/water-separation Dixon method for balanced steady-state free precession (bSSFP) introduced by Huang *et al.*¹ shows great promise for non contrast-enhanced MR angiography². Here, we investigate its limitations in the presence of B_0 inhomogeneities (*i.e.*, from magnet non-uniformity, susceptibility, *etc.*), and for pixels containing a mixture of fat and water. From the analysis, we propose acquiring/using a B_0 inhomogeneity map to better suppress fat and produce more robust water-only images.

Methods: All simulations were done in Matlab (version 7.4; The MathWorks, Natick, MA), with the theoretical, noise-free signals synthesized using the general SSFP equations from Haacke *et al.*³ We used typical 3.0 tesla values for the tissue parameters M_0 , T_1 , T_2 , and chemical shift (CS) of fat and water, namely M_0 : 0.9/1.0, T_1 : 300/1100 ms, T_2 : 60/50 ms, and CS: -440/0 Hz, respectively. The cycle time, τ_{cyc} , of fat with respect to water is ~ 2.27 ms. The Huang-Dixon method requires (i) TR to be an odd half-multiple of τ_{cyc} , (ii) TE = $\frac{1}{2}$ TR, and (iii) two acquisitions with different centre frequency (CF) offsets. The water-only signal is calculated from the complex addition of the two scans. Simulations shown here used TR/TE: 3.4/1.7 ms, a 25° flip angle, and $\gamma\Delta B_0$ within ± 300 Hz.

Results: SSFP techniques are known to exhibit periodicity with respect to off-resonance frequency, whereby the signal “bandwidth” BW_{ssfp} is $1/TR$ (*i.e.*, ~ 294 Hz herein). Consequently, water that is off-resonant by $\pm \frac{1}{2}BW_{ssfp}$ yields little signal and produces the familiar dark bands. By applying a centre frequency offset of say δf , BW_{ssfp} is unchanged but the dark bands shift commensurately (*e.g.*, to $\delta f \pm \frac{1}{2}BW_{ssfp}$ for water). Below are two Huang-Dixon outcomes (with CF offsets of ± 110 and ± 74 Hz, top row) for pixels containing only water or only fat. At first glance, the ± 110 Hz results seem more desirable, but the water signal is noticeably apodized. By comparison, the ± 74 Hz (*i.e.*, $\pm \frac{1}{4}BW_{ssfp}$) offsets show a more symmetric/periodic behavior, and the complex subtraction (not shown) is its complement. Now, for an equal muscle-to-fat mixture, admittedly the worst-case scenario, the outcomes (bottom row) are striking: periodicity is still evident, the complementary nature of the complex add/subtract signals is seen only for the ± 74 Hz centre frequency offsets ($\pm \frac{1}{4}BW_{ssfp}$), and the desired water signal is more severely modulated as compared to the no-mixture results.

Conclusion: Increasing the B_0 uniformity is clearly of paramount importance for the Huang-Dixon method. However, the diagrams below show that by using CF offsets of $\pm \frac{1}{4}BW_{ssfp}$, the complex add/subtract results are complementary. This suggests that if one acquires a B_0 inhomogeneity map (which may be of lower resolution), and applies (i) complex *summation* for pixels within the frequency ranges $\gamma\Delta B_0 = \{ (n+\frac{1}{4})BW_{ssfp} \text{ to } (n-\frac{1}{4})BW_{ssfp} \}$, with n an integer, and (ii) complex *subtraction* otherwise, one should ideally obtain an improved, fat-suppressed, mostly-water bSSFP image. More specifically, (a) for mostly-water pixels (upwards of $\sim 80\%$), the banding artifacts would be significantly reduced, (b) mostly-fat pixels would be suppressed in the water-only image, regardless of B_0 inhomogeneity, and (c) pixels that contain comparable amounts of fat and water *might* show band artifacts, but only for those pixels that are off-resonant near odd multiples of $\pm \frac{1}{4}BW_{ssfp}$.

References: ¹TY Huang, *et al.* Magn Reson Med 2004, 51:243. ²R Stafford, *et al.* Magn Reson Med 2008, 59:430. ³EM Haacke, *et al.* “Magnetic resonance imaging: Physical principles and sequence design”, John Wiley and Sons, New York, 1999, Chapter 18.

Figure: The upper row shows the Huang-Dixon complex addition results for pixels that contain only water or only fat. The left column is for CF offsets of ± 110 Hz, while the right column is for CF offsets of ± 74 Hz ($\pm \frac{1}{4}BW_{ssfp}$). The lower row depicts both the complex addition and subtraction results for a pixel that contains 50% water and 50% fat. The ‘Ideal Fat’ and ‘Ideal Muscle’ horizontal lines represent the maximum signals for that tissue at their respective \pm CF offsets.