
Figure 1. Pulse echo simulation result for a single isochromat, Δω=5rad/s. A π/2 
pulse is applied at t=0, and a π pulse is applied at t=0.2s. Clearly, the refocusing 
pulse does not change the radial component but changes the azimuthal and 
vertical components. In the simulated spin system T1=1s, and T2 = 0.5s. 

Figure 2. Pulse echo simulation results for five isochromats. Only the 
azimuthal components are shown in this figure. After applying the refocusing 
pulse at t=0.2s all isochromats will have the same azimuth value at t= 0.4s. 
The spin system is the same as spin system in Figure 1. 
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Introduction:  The Bloch equations are fundamental to the classical description of the magnetic resonance dynamics which is the basis of MRI [1]. 
Here, we provide a novel interpretation of magnetic resonance by expressing the Bloch equations in cylindrical coordinates. Interpretation of 
magnetic resonance in cylindrical coordinates provides a significant simplification of the occurrence of relaxation parameters, T1, T2, and T2

*. 
Moreover, the expression of the Bloch equations in cylindrical coordinates enables a straight forward description of the Bloch equations in the 
rotating frame. The novel framework introduced here is directly applicable to research into optimal excitation patterns in magnetic resonance 
problems [2, 3]. 
Methods:  The Bloch equations in Cartesian coordinates in the laboratory frame of reference are written as 

1

0

1

.

2

.

2

.
;;

T

M

T

M
MMMM

T

M
MMMM

T

M
M z

yxxyzzx
y

xzyzyyz
x

x +−−=+−−=−+−= ωωωωωω .                                                                             (1) 

If the applied external field is
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coordinates we have 
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where )()( 11 tBt eγω = and 0ω represents the main magnet Larmor frequency, 00 Bγω = . In order to transfer the Bloch equations to the rotating frame of 

reference in cylindrical coordinates it is sufficient to define a new azimuthal component φφ ω MtM += 0' . Subsequently the cylindrical Bloch equations 

in the rotating frame of reference may be written as 
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The prime notation distinguishes the MR signal components in rotating frame from the laboratory frame of reference. When the excitation is turned 
off Equation (3) simplifies to 
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Equation (4) clearly separates the relaxation time constants. It is obvious that T1 relaxation time constant affects the vertical component, while the 
magnitude of the radial component only depends on T2. It is important to note that field inhomogeneities only change the azimuthal component of the 
MR signal. This is the cause of T’

2 decay of the signal. If the field inhomogeneities are assumed to have a Lorentzian distribution, it follows that the 

MR signal decays with T2
* time constant, for which '

22
*

2 111 TTT += . Thus, from the dynamics of the MR signal in the cylindrical coordinates, the 

two components of the T2
* relaxation and their respective sources become immediately apparent. Moreover, it is evident that a π refocusing pulse can 

compensate the effect of T’
2 but not the intrinsic T2. 

Simulation Results:  The simulation result of the cylindrical Bloch equations for a single off resonance isochromat is depicted in Figure 1. The 
simulation result for the azimuth component of five isochromats is represented in Figure 2 demonstrating rephrasing of the isochromats. 

 
                              
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
Conclusions:  We have taken a fresh a look at magnetic resonance by transferring the Bloch equations into cylindrical coordinates. In this new 
framework, the differences between the relaxation processes are immediately evident. It is possible to transfer the cylindrical Bloch equations to an 
excitation dependent rotating frame of reference [4] and find an approximate analytic solution to the Bloch equations. We expect that the new 
representation of the Bloch equation will allow researchers to revisit the pulse design question [5] and aid in the determination of optimal excitation 
patterns [3]. 
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