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Introduction
Blood T; is a critical parameter for black blood imaging (1) and perfusion quantification with arterial spin labeling imaging (2). Conventional T,
measurement is time-consuming as the longitudinal relaxation curve is sampled with varied inversion times (Tl) in separate scans. Characterized by high
imaging speed while preserving a high signal-to-noise ratio, TrueFISP (3) has been proposed for in-vivo T; mapping of static tissue with inversion
recovery (IR) preparation (4). The apparent T, of static tissue estimated with IR-TrueFISP, however, exhibits a complicated dependence on the flip angle
and the relaxation time constants (T1/T,) of the tissue (5). An interesting observation from our experiment is that IR-TrueFISP may provide an efficient yet
accurate approach for in-vivo blood T, mapping, due to the replenishment of blood spins with longitudinal magnetization unperturbed by the TrueFISP
pulse train. Therefore, blood pool signals in IR-TrueFISP acquisitions generally follow the conventional T, recovery model. In this study, we conduct
experiments and computer simulations to investigate the feasibility and reliability of using IR-TrueFISP for blood T; measurement.

Materials and Methods

All MR imaging was in accordance with the Institutional Review Board guidelines, and performed on a 3.0 T whole body scanner (Siemens Trio, Erlangen,
Germany) with a standard setup of body coil transmission and phased-array head coil reception. Six healthy volunteers (age = 16-25 years, F/IM = 2/4)
were imaged after written informed consent was obtained from each of them. For IR-TrueFISP scans, the o/2-(+o)) scheme was adopted for efficient
signal stabilization, and phase encoding advanced in a centric order (TR =5ms, TE = TR/2, o = {100, 30°, 500}, in-plane matrix = 128x128, FOV = 220
mm). Following a spatially nonselective hyperbolic-secant inversion pulse and 20 dummy scans, 50 phases of TrueFISP readout were carried out with 19
lines of k-space data obtained during each phase. The Tl values corresponding to the 50 phases thus ranged from 100 ms to 4850 ms with a step of 95
ms. At the end, the magnetization was restored to the +z axis using a -o/2 pulse. The procedure was then repeated for the next 19 k-space lines and so
on with a total scan time of 48 sec. Images were obtained from a 5-mm axial slice where the sagittal sinus was perpendicular to the slice. Signals were
extracted from regions-of-interest at gray matter and mid-sagittal sinus, and fitted to a three-parameter model: k,*(1-k.*exp(-t/ks)). The effects of oo and
flow velocity (v) were estimated with numerical simulations of Bloch equations. Phase-contrast (PC) MRI was acquired at the same imaging slice to
estimate the mean venous blood flow velocity in sagittal sinus (FOV = 220 mm, matrix = 128x128, flip angel = 15°, TR = 25 ms, TE = 3 ms, VENC = 60
cm/s along z axis, scan time = 3 s). For comparison, single-phase IR-TrueFISP acquisitions were performed at 16 different TI's (100-5000 ms).
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