Pulse Sequence Programming using XM L and JavaScript

W. Overall*, and J. Pauly*
'Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction: Pulse-sequence programming is typically performed in low-level compiled
languages, principally C and C++'?. These languages are extremely flexible, but the

. . . e . S Pul

complexity of the resulting code makes it hard to maintain. Creating new sequences is time- - - u s,es

. d th i iled code is oft t portabl ss platf Y . SliceSelectGradient Timeinterval
consuming, and the resulting compiled code is often not portable across platforms. We propose Name = 'Select' Name = TE"
the use of higher-level XML and interpreted scripting to simplify the sequence programming SliceThickness = 5 Duration = 6
process, resulting in human-readable code that is portable across scanners and more easily RFPulse = 'Excitation’ Start = 'Excitation.center'
maintained. This approach has analogy in web programming, where HTML files provide a SincRF CarigsianReadout
lishtweieht f for describi b di d scripting 1 JavaSecri Name = ‘Excitation Name = ‘Readout
ightweight format for describing web pages, and interpreted scripting languages (JavaScript, Tip = 45 FOV = 24
perl, etc.) are made available on top of that to enable more complex and dynamic content. Duration = 1.2 Resolution = 256

TimeBandwidth = 4 NetArea = 1

Methods: Our approach uses a standard XML template at its core for maximum portability

oo X Center = ‘Select.center' Center = TE.end'
across platforms. Pulse sequences are specified through three classes of tags: pulse tags, which

specify individual pulses; layout tags, which specify global constraints; and sequencing tags, | Layout || Sequencing_l
which specify sequence changes that occur across TR boundaries. As an example, a simple RF- SamplingRate = 250 Repeat

spoiled gradient-echo pulse sequence might be specified as shown in Figure 1. For this gfa %’I’:ﬂ;ﬁi; gfgi’”figzi:nf_s 100
sequence, four pulse tags are required to specify the readout, slice selection, RF, and TE SlewMax = 10 RF,nC,e,?,em)
interval, and three sequencing tags are used to set up the number of repetitions, RF spoiling, and TR=10 Quadratic = 117
imaging plane. Pulse positions can be specified relative to the other pulses in the sequence or as CoordinateTransform

an absolute time, so that the pulses move as expected in response to sequence changes. Pulse Plane = Sagital

tags exist for many common purposes, and primitive binary pulse tags exist if unsupported or
arbitrary waveforms are desired. Similarly, sequencing tags exist for common operations such
as magnetization preparation, interleaving of sequences, etc.

While this framework is sufficient for fully specifying the majority of common pulse
sequences, some constraints do not easily fit within the XML paradigm. As an example, if one
wanted to set TE as an arbitrary algebraic combination of other sequence parameters, the XML
file format alone would not be adequate. For these situations, we also provide the ability to
include inline JavaScript code. Through the JavaScript, arbitrary sequence parameters can be
accessed and set, and flexible sequence control is available with a minimum of code. X q Time y

We have 1mp1en'16nted thlS. XML+JayaScr1pt sequence 1nt.erpreter within the SplnBen.ch’ Figure 1: Pseudo-XML (top) shows the settings
sequence-programming and spin simulation tool, which is available as a free download online. required for a simple SPGR pulse sequence. A
In addition to the ability to read and write these lightweight sequence files, the program is also gpecialized XML interpreter can then parse and
able to generate and modify sequences through a graphical interface. The sequence-rendering render the sequence as shown (bottom).

engine (Fig. 2) interprets each XML tag as a separate object, each with its own unique set of
properties and rendering rules. A sequencing pipeline creates and renders each TR as requested Layout JavaScript
by the output, caching intermediate results at each stage of the pipeline. This approach permits Manager | | | Interpreter
fast rendering without the large memory requirements associated with keeping an entire
sequence rendered in memory at once. JavaScript code is interpreted as it is encountered, and
results are passed along to the appropriate object.

>
J

.

Gx

Resultss We have applied this approach for programming a wide variety of common pulse
sequences, including those shown in Figure 3. New sequences are straightforward to
implement, and many can be completed using the graphical interface in less than an hour. The
JavaScript interpreter is useful in specifying dynamic logical constraints, but most sequences
require less than 20 lines of JavaScript in total.

Time Interval
1}
Cartesian Readout

Discussion: We have developed and demonstrated a flexible, platform-independent MR pulse- ~ Figure 2: Block diagram of the rendering
programming language. Our graphical environment for creating pulse sequences using this Process. Pulses are rendered according to layout

Coordinate Transform [----

language, along with a library of sample sequences, is available for download over the web’. constraints, then TRs are sequenced as specified.
References: 1. Magland, J, et al. Proc. 14™ ISMRM: 2365, 2006. 3. http://www.SpinBench.com/ Figure 3: Pulse sequences described in XML
2. Benoit-Cattin, H, et al. JMR 173(1): 97-115, 2005. and rendered via SpinBench. (a): Fast Spin Echo

(b): Refocused SSFP (c): Spiral GRE.

>

4)

Gx Gy Gz RF

Time

Proc. Intl. Soc. Mag. Reson. Med. 17 (2009) 2684

