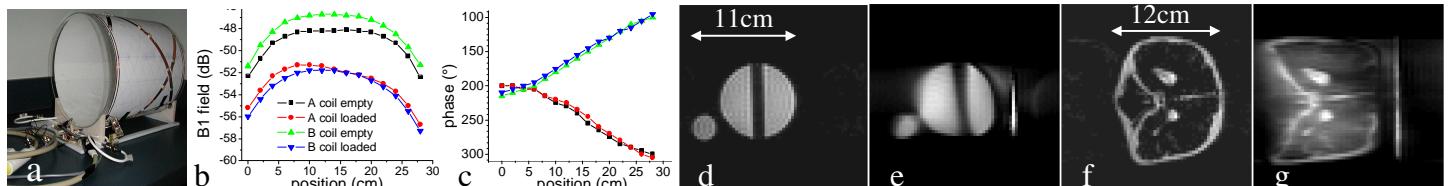


Phase Encoding without Gradients at High Field: TRASE RF MRI at 3T

S. B. King¹, P. Latta¹, V. Volotovskyy¹, J. C. Sharp², and B. Tomanek²

¹National Research Council of Canada, Institute for Biodiagnostics, Winnipeg, Manitoba, Canada, ²National Research Council of Canada, Institute for Biodiagnostics (West), Calgary, Alberta, Canada

Introduction


The development of fast MRI methods has focused on new efficient single-shot k-space trajectories or parallel acquisition of undersampled k-space trajectories. Recently, a new RF B₁-field method of spatial encoding was introduced whereby k-space is traversed in the phase encoding direction without using B₀ magnetic field gradients, but by applying different B₁-phase gradient fields produced by a Tx-array, TRAnsmit Array Spatial Encoding (TRASE) [1,2]. This simple method has been shown to work very well at 0.2T for both gradient-free 2D MRI [3] as well as gradient-free slice selection [4]. Here we demonstrate our first step at TRASE MR imaging in more inhomogeneous B₁ fields at 3T using both a switched 1- and 8-channel transmitter system, gradient-free encoding in one dimension with a two-channel spiral birdcage array B₁-fields.

Theory

If an array of Tx-elements are driven to produce a B₁-phase gradient along a particular direction of the form, $\mathbf{B}_1 = |\mathbf{B}_1| e^{i\phi_1(\mathbf{r})}$ where $\phi_1(\mathbf{r}) = 2\pi\mathbf{k}_1 \cdot \mathbf{r} = \mathbf{G}_1 \cdot \mathbf{r}$, then the magnetization after applying a refocusing 180° RF pulse with this B₁ phase gradient is $\mathbf{M}_+ = \mathbf{M}_- e^{i2\phi(\mathbf{r})} = \mathbf{M}_- e^{i2\pi[2\mathbf{k}_1 \cdot \mathbf{r}]}$, so that $\mathbf{k}_+ = -\mathbf{k}_- + 2\mathbf{k}_1$. The key is to then apply a pulse sequence consisting of excitation followed by an alternating train of refocusing pulses: 90_A–180_A–180_B–180_A–180_B–..., using a Tx-array that can produce two different phase gradients G_{1A}(r) and G_{1B}(r), with respective k-space origins k_{1A} and k_{1B}, then the k-space coordinate (after each 180° pulse) as observed by field B_{1A} accumulates as: (0, -Δk_{BA}, +Δk_{BA}, -2Δk_{BA}, +2Δk_{BA}, ...), where Δk_{BA} = 2(k_{1B}–k_{1A}). (Note that in reception, a phase gradient coil receives the signal with an additional k-space shift of -k₁). Therefore the key to high resolution TRASE MR imaging is to repeatedly refocus using alternating phase gradients, allowing the signal phase or k-space trajectory to accumulate to higher k-space states. Then the NMR signal becomes spatially encoded by the transmit B₁-field. The field-of-view which can be encoded without aliasing, in this single-shot, single receive field experiment, is given by $\text{FOV}_{\text{shot}} = 1/\Delta k_{BA}$, and is equivalent to the distance over which $\phi_A(\mathbf{r}) - \phi_B(\mathbf{r})$ is equal to π . Spatial resolution is then $\text{FOV}_{\text{shot}}/N$.

Methods/Results

A +π and -π spiral Birdcage array was constructed at 123.2 MHz, 29 cm long and 28 cm in diameter, for a FOV_{shot} (where $\Delta\phi = \pi$) of about 20cm (Fig. 1a) mapped on the bench using a small search probe and a network analyzer (Agilent). The two channel Tx-array was configured to operate using a single transmitter system with scanner TTL signals used to control a two-way power director, or configured to operate without this extra Tx-switching, using two separate Tx-channels of the Siemens prototype 8-channel transmitter on a 3T TRIO Tim MRI system. Images were collected using a single shot Turbo Spin Echo (TSE) sequence of 64 echoes (4 mm Coronal slice, 1 Average, 20cm FOV, TE=11ms, S-I Phase Encoding), with a 90° SINC slice selective excitation and Rectangular 180° refocusing, first with normal phase encoding using a single spiral birdcage coil: 90_A – 180_A – 180_A – 180_A – 180_A ..., and secondly for TRASE a 64 echo acquisition was acquired without phase encoding gradients, by applying Tx-power sequentially to the two spiral birdcage arrays: 90_A – 180_A – 180_B – 180_B – 180_B ..., followed by standard unfiltered, uncorrected 2DFT reconstruction. Images were collected of a three-compartment saline phantom (11cm S-I x 8 cm) and a formalin-fixed brain (12cm S-I x 14cm).

Fig. 1: (a) Constructed +π and -π two channel array. (b) B₁ magnitude maps of two coils. (c) B₁ phase maps show a FOV_{shot} (where $\Delta\phi = \pi$) about 20cm. Coronal images of the phantom (d,e) and of a formalin fixed brain (f,g) acquired using: (d,f) Standard 1-shot 2D Turbo SE, TE=11ms, 64 echo, 20cm x 20cm FOV using +π coil only; (e,g) same but without phase encode gradients with single shot, 64 echo, S-I (left-to-right in image) TRASE encoding 90_A – 180_A – 180_B – 180_A – 180_B ... by alternating between the two spiral birdcage coils during transmission.

Discussion/Conclusions

Using only two B₁ phase gradients, TRASE produced images (Fig. 1e) comparable to those acquired using standard gradient encoding (Fig. 1d). The brain phantom results (Fig. 1g) are also good, but due to the larger phantom size, TRASE MRI is susceptible to B₁ inhomogeneity artifact. The on-axis phase gradients were very linear (Fig. 1c), but the magnitude of the phase gradient off-axis is stronger, leading to some gradient non-linearity image distortion seen as a smaller effective FOV away from the isocenter axis of the coil in the brain image (Fig. 1g). Although the FOV_{shot} for the 2-channel phase gradient array was about 20cm, the less than optimal magnitude uniformity (Fig. 1b) results in a loss of spatial encoding at spatial locations where the refocusing pulse flip angle is far from 180°, and hence the corresponding encoding artifact [5] is seen as a bright line in the image. At this high field strength, B₁-shimming could improve TRASE image quality, although this can be done using a single Tx system, as we move to 3D TRASE MRI, all the Tx-switching will also become complicated, and the multi-Tx method may prove simpler. Future research will include optimizing for B₁ homogeneity by B₁ Shimming and composite RF pulses and a full 3D TRASE 3T implementation including 2D encoding and slice selection using a multi-Transmitter. Once perfected, this new silent k-space traversal method will allow the exploration of new data acquisition schemes that may reduce gradient related artifacts/deficiencies and improve imaging speed.

References: [1] S.B. King, D. Yin, S. Thingvold, J.C. Sharp, B. Tomanek, Proc. ISMRM, p.2628, 2006, [2] S.B. King, P. Latta, V. Volotovskyy, J.C. Sharp, B. Tomanek, Proc. ISMRM, p.680, 2007, [3] J.C. Sharp, S.B. King, D. Yin, V. Volotovskyy, B. Tomanek, Proc. ISMRM, p.829, 2008, [4] J.C. Sharp, S.B. King, D. Yin, V. Volotovskyy, B. Tomanek, Proc. ISMRM, p.1083, 2008, [5] J.C. Sharp, S.B. King, D. Yin, P. Latta, B. Tomanek, Proc. ISMRM, 2009 (submitted).