

CAIPIRINHA accelerated simultaneous multi-slice TrueFISP real-time imaging

D. Stäb¹, M. Gutberlet¹, F. Breuer², M. Blaimer², D. Hahn¹, and H. Köstler¹

¹Institut für Roentgendiagnostik, Universitätsklinikum Würzburg, Würzburg, Bavaria, Germany, ²Research Center Magnetic Resonance Bavaria, Würzburg, Bavaria, Germany

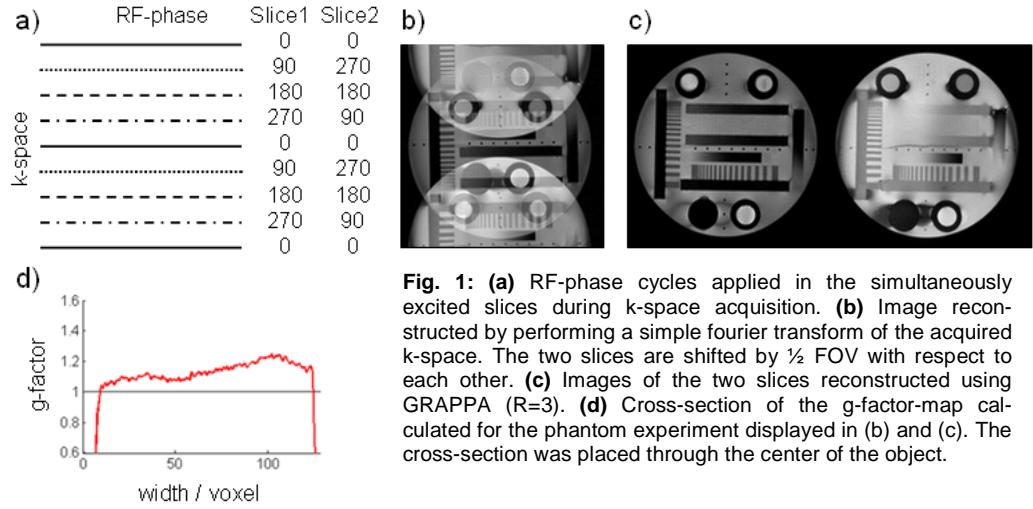
Introduction:

CAIPIRINHA multi-slice imaging offers the possibility to acquire several imaging slices simultaneously while maintaining the image quality (1), allowing a high acceleration of the imaging procedure. By providing the individual slices with different RF-phase cycles, the simultaneously excited slices are shifted with respect to each other in the FOV, facilitating the separation of the overlapping slices in a post-processing step using parallel imaging reconstruction algorithms.

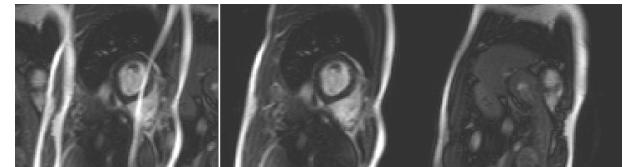
However, due to the constraint to keep the steady state condition, TrueFISP sequences require also a RF-phase cycle (3), rendering the implementation of CAIPIRINHA difficult. Previously presented approaches (2) utilizing a segmented acquisition in order to maintain the steady state in the individual slices are not practicable for real-time experiments or experiments with magnetization preparation.

TrueFISP sequences provide high intrinsic signal-to-noise ratio (SNR) and advantageous contrast for many imaging applications. Hence the purpose of our study was to develop a technique combining CAIPIRINHA multi-slice imaging with TrueFISP by providing steady state for each of the individual slices.

Material and methods:


With a TrueFISP sequence using evenly spaced RF-pulses with constant flip angle, a steady state can be realized, if the phase of the m^{th} RF-pulse satisfies the condition $\Phi(m) = A + Bm + Cm^2$, with $m = 0, 1, 2, \dots$ and A, B, C being arbitrary constants (5). For CAIPIRINHA an individual shift in the FOV is required for each simultaneously excited slice, achievable by implementing multi-slice RF-pulses, satisfying the condition $\Phi_n(m) = A + B_n \cdot m$ individually for each simultaneously excited slice n ($B_i \neq B_j$). Hence, to realize CAIPIRINHA phase cycles and to meet the steady state condition of the sequence at the same time, for each of the simultaneously excited slices individual dedicated constant phase increments Δ_n between succeeding multi-slice RF pulses were implemented.

Phantom and real-time cardiac experiments in humans were performed on a Siemens Symphony 1.5T system using an 8 channel body array for signal reception. In order to perform two-slice experiments, optimized dual-band RF-pulses were integrated into the sequence. The first of the two simultaneously excited slices employed a phase increment of $\Delta_1 = +90^\circ$, $(0^\circ, 90^\circ, 180^\circ, 270^\circ, 0^\circ, \dots$ RF phase cycle) and the second slice $\Delta_2 = -90^\circ$ $(0^\circ, 270^\circ, 180^\circ, 90^\circ, 0^\circ, \dots$ RF phase cycle) resulting in a shift of $\frac{1}{2}$ FOV between the two slices (fig 1).


The Sequence equipped with view sharing employed the following parameters: FOV: 320x320mm; Matrix: 128x64; shared phases: 27; slice thickness: 10mm; TR 3.3ms; TE 1.64ms; flip angle: 33°; 8.2 images/s; slice distance: 30mm. An adapted offline GRAPPA (4) reconstruction ($R=3$) in combination with a calibration scan was used to separate the overlapping slices. In order to examine the noise enhancement introduced by the parallel imaging reconstruction, g-factor-maps were calculated for the phantom-experiments according to Breuer et al. (6).

Results:

Using a dedicated TrueFISP sequence cardiac real-time imaging could be performed in two slices simultaneously. The results of the phantom and *in vivo* study are shown in fig. 1 and fig. 2 respectively. The adapted GRAPPA reconstruction separated the overlapping slices in both, phantom and *in vivo* experiments without visible reconstruction artifacts. g-factor maps calculated for the phantom study revealed low g-values. Thus, no significant noise enhancement was introduced by the GRAPPA reconstruction with $R=3$ using an 8-channel receiver array. A cross-section of the g-factor-map calculated for the experiment displayed in fig. 1 (d) is shown in fig. 1 (d).

Fig. 1: (a) RF-phase cycles applied in the simultaneously excited slices during k-space acquisition. (b) Image reconstructed by performing a simple Fourier transform of the acquired k-space. The two slices are shifted by $\frac{1}{2}$ FOV with respect to each other. (c) Images of the two slices reconstructed using GRAPPA ($R=3$). (d) Cross-section of the g-factor-map calculated for the phantom experiment displayed in (b) and (c). The cross-section was placed through the center of the object.

Fig. 2) Images of a two-slice *in-vivo* cardiac real-time experiment. Two short-axis-slices of the heart were imaged simultaneously. Displayed are the two overlapping simultaneously excited slices (left) and the corresponding reconstruction of the two slices using the adapted GRAPPA-algorithm (right).

References:

- [1] Breuer, Magn Reson Med 53: 684-691 (2005)
- [2] Bretschneider, Proc. ESMRMB 21 (2004), #272
- [3] Scheffler, Concepts Magn Reson 11: 291-304 (1999)
- [4] Griswold, Magn Reson Med 47: 1202-1210 (2002)
- [5] Sobol, J Magn Reson Imag 6: 384-398 (1996)
- [6] Breuer, Proc ISMRM 16 (2008), #10