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P. H. Le Roux*?

'Applied Science Lab, GE Healthcare, Palaiseau, France, 2SHFJ, CEA, Orsay, France

Introduction

The non-CPMG sequence [1] is a spin echo sequence that permits to obtain a
full magnitude signal even in the presence of initial phase variation. It employs
a quadratic phase modulation of the refocusing pulses train that, seen in an
appropriate frame, is equivalent to a (large) linear stationary system. It then
suffices to put the spin system in an adequate state (one of the eigenstate of
the enlarged system) to obtain either a constant signal or an alternating sign
signal depending on the initial position of the magnetization. An efficient
numerical algorithm can determine this eigenstate, but the determination of the
series of pulses permitting to attain this state (catalyzing) has to rely on
classical optimization procedure, which turns out to be rather imprecise. We
show here that at least for nutation angle above 145°, both the eigenstate and
the series of catalyzing pulses can be found analytically.

Theory

Following a procedure depicted in [1], it is always possible to write an arbitrary
phase modulation in the form of a frequency sweep which, when using spinor
notation, leads to the recursion (1). We will prefer to use here the second order,
one component equation of movement (2), which can be obtained by
combining two consecutive equations (1). (A similar equation exists for the
second component y). In the special case of a quadratic phase modulation, the
frequency sweep is linear and can be put in the form (3) leading to the equation
(4). This equation has particular solutions which consist in the translation (and
multiplication by a constant, here ‘-j’) of a stable function uy, . We develop this
function in form of a polynomial in the variable Z in (5). Considering (4), itis
found that the coefficient Uy of this development must verify the equation (6).
Solving (6) by brute force is not very enlightening, but decomposing it in
successive power of the variable ¢ (which is nominally zero), as written in (7),
permits to find without too much difficulty the analytical expression up to the
third order. In this abstract we stop at first order and find the equation (8) for
the corresponding coefficients. It is found that this simple analytical model is
quite valid down to 160°, and even acceptable at 145°. Now, considering the
development, in successive power of ¢, of the equation of movement (2), one
finds that the first order approximation is in the form (9) (for even echo) . One
way to catalyze the response is to try to match at first order both the target
distribution (the eigenstate (7)) and the current response (9). One can render
the coefficients in (7) and (9) equal by using at least the four first pulses of the
train, starting the linear frequency sweep (3) not before the fifth pulse. The
condition is given in (10), the solution in (11). We also give in (12) the
numerical values for a sweep coefficient equal to A=1.2 radians.
Experimental Verification

In order to assess the validity of this simplified stabilization we acquired the
signal generated by a 4cm sphere (tennis table ball) filled with copper sulfate
solution (500mg/l), with approximated T;=T,=800ms, using an experimental
Diffusion Weighted imaging sequence [2], zeroing the selection gradient during
the refocusing pulse, but keeping the crusher gradient and read gradient (the
90° and, DW preparation 180° were kept selective, with no DW gradient
employed). We acquired 90 echoes, the echo spacing being 6.5ms. The TR
was lengthened to 6 seconds. The Fourier transform along the read direction
was performed, the signals coming from the central portion of the sphere
isolated and summed. From that we found the’ In Phase component’ by the
sum of two successive echoes signals and the ‘Out Of Phase component’,
obtained by the difference. The Figure 1 shows the complex In Phase
Response for nutation of 175° down to 145° by step of 7.5°.

Discussion

The proposed catalyzing sequence cannot compete with the ones obtained by non linear programming as in [1], but its implementation simplicity may be
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of interest when for some reasons, it is certain that the nutation angle is above 160°. But the main interest is theoretical as it shows that the type of
symmetrical spinor needed by nCPMG can be attained with good precision in a short period of time. The next step is of course to try to develop and
stabilize down to the second order, in which case the solution will probably be competive with the non-linear optimization solutions.
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