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Introduction: Random numbers have been used in the past to shuffle the phase encoding 
line order in dynamic MRI [1]. The key idea is to move beyond the conventional approach 
that consecutive images of a time series are acquired separately and orderly. Instead the k-
space data are continuously updated in a non-orderly fashion. Therefore, the number and 
temporal locations of time frames can be chosen retrospectively. However, pseudo-random 
numbers tend to “clump”, meaning that even a small set of random numbers may contain 
elements with very similar (or identical) values, which effectively reduces the possible 
temporal resolution in randomly sampled MRI. Quasi-random numbers are designed to 
better obey the intended distribution, while still maintaining some random properties. The 
quasi-random shuffling of projections in dynamic radial MRI was recently shown [2]. We 
propose a simple method for the quasi-random shuffling of the phase encoding line order in 
Cartesian MRI and show some first results. 

Theory and Methods: The sequence of integers nk = k·mod(A,B) (mod denotes the integer 
remaindering operation) is a permutation of the numbers k=0..B−1 if and only if A and B 
are relatively prime. The permutation is “most uniformly distributed” when the ratio, A/B, 
approximates the golden mean, in other words if A and B are consecutive Fibonacci 
numbers. This presents a simple and effective way to shuffle phase encoding lines in a 
repeated MRI experiment:  
 - Search for the largest Fibonacci number (fk) that fits into the total number of TR repetitions 
 - Create a quasi-random shuffled series with fk  and its precessor fk-1  according to the above equation 
 - Map this shuffled series on the series of phase encoding lines (by using a distribution of choice) 
It is desirable in most cases to sample the center more frequently than the outer part of k-space. To 
accomplish such an acquisition, we weighted the uniformly distributed quasi-random number sequence by 
a Gaussian distribution (illustrated in figure 1). IR-TrueFISP measurements were performed on a healthy 
volunteer at 1.5T with a 12-channel head-coil. A total of 2592 shuffled lines were acquired during the IR-
experiment in a single-shot (TR=3.2ms, matrix=192x108, total time=8.3s). A total of 50 timeframes were 
reconstructed by a combination of view-sharing and parallel imaging. A variable window size, depending 
on the k-space-position, was chosen so that the Gaussian weighting was effectively reversed and the 
undersampling pattern was relatively uniform (min./max window size=42/261 TRs). To remove the 
remaining undersampling due to missing phase encoding lines, a GRAPPA reconstruction [3] with two 
different kernels (acceleration factors 2 or 3; on average 1.55) was performed. As a reference, a 
conventional inversion recovery TrueFISP experiment was performed with 64 time frames, acquired in 4 
segments (relaxation delay after each segment: 10s, total time=1 min). T1- and T2-maps were obtained 
from a 3-parameter fit of the images according to [4]. 

Results: A sample of reconstructed time frames of the quasi-random 
inversion-recovery TrueFISP experiment is shown in figure 2. Figure 3 shows 
the T1 and T2 maps obtained from the three parameter-fit for the quasi-random 
and the reference experiment. 

Discussion: The key element of the proposed sampling scheme is the quasi-
random shuffling of the phase encoding line order. Since it is beneficial in 
most cases to update the low-frequency parts of an image more frequently, it is 
necessary to weight the quasi-random sequence accordingly. In addition to the 
presented reconstruction method, the proposed acquisition scheme can be 
combined with other, more sophisticated reconstruction techniques. We believe 
that a 3D implementation of quasi-random sampling would be well-suited for 
compressed sensing due to the incoherency of artifacts in undersampled time-
frames. 
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Figure 2: Representative time frames from the 
single-shot IR-TrueFISP experiment. 

Figure 3: T1 and T2 maps obtained from the quasi-random TrueFISP 
measurement (left), the reference experiment (middle), and their differences 
(right). Note that the quasi-random measurement acquired only 1/4 of the 
data and took 1/8 of the scan time compared to the reference (due to the 
required long relaxation delay between segments). 

Figure 1: Gaussian weighted quasi-random sampling scheme. 
The lines represented by blue crosses were used for the 
reconstruction of the chosen time point (red hexagram). 
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