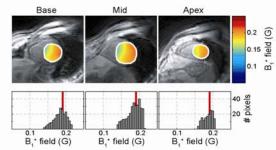
In vivo mapping of the peak B1+ field strength on a conventional scanner

K. Sung¹, H. H. Hu², and K. S. Nayak²

¹Radiology, Stanford University, Stanford, CA, United States, ²Electrical Engineering, University of Southern California, Los Angeles, CA, United States

Introduction: The maximum achievable B_1^+ (amplitude of the circularly polarized transmit field rotating in the same sense as the magnetization) is a function of the radiofrequency (RF) coil, RF amplifier, patient size and shape, and local dielectric effects. Knowledge of the maximum B_1^+ field enables one to optimize RF pulses and pulse sequences and has become increasingly important at high field strengths. We present a rapid method for mapping the peak B_1^+ field using prescan variables and a rapid relative B_1^+ mapping pulse sequence. This approach is applied to human cardiac imaging on a commercial 3T system.

Methods and Results: The vendor supplied automatic prescan calibrates a transmit gain to determine the amount of RF power that will produce a 90° excitation. The maximum achievable B_1^+ field (*Peak* B_I^+) can be conversely computed (assuming the maximum RF amplifier power is applied):


Peak
$$B_1^+ = B_{1max,seq} \times 10^{(200-TG)/200}$$

where $B_{1\text{max,seq}}$ is the highest B_1 amplitude among all the RF pulses used in the pulse sequence and TG is the transmit gain ranging from 200 to 0, representing an attenuation of 0 to -20 in dB [1]. For example, if $B_{1\text{max,seq}}$ is 0.146G and TG is 180 (-2dB), then $Peak\ B_1^+$ is 0.1838G. The parameter TG is measured by the overall signal strength from the prescribed scan plane, and therefore $Peak\ B_1^+$ represents the gross maximum B_1^+ in the prescribed scan plane. A local region, however, can comprise different maximum B_1^+ fields due to B_1^+ inhomogeneity. B_1 mapping is able to provide the spatial information of relative spatial B_1 scales ($b_1(x,y)$); actual flip angle divided by nominal flip angle). The local maximum B_1^+ can then be computed as multiplying $b_1(x,y)$ by $Peak\ B_1^+$.

Experiments were performed on two GE 3T scanners. Quadrature birdcage body coils were used for RF transmission and an 8-channel cardiac phased array coil was used for signal reception. The maximum RF amplifier power was 20kW. The maximum B_1 fields were measured in 21 subjects (7 cardiac patients and 14 healthy volunteers) using prescan information (TG and $B_{1\text{max,seq}}$) and the saturated double-angle method (SDAM) [2,3]. Slice profile imperfections were compensated when computing $b_1(x,y)$ [4]. Basal, medial, and apical slices were chosen for each subject, and the left ventricular (LV) myocardium was manually segmented in 3 short-axis slices.

Fig 1 shows a representative example of maximum B_1^+ maps. The histograms of maximum B_1^+ fields over the LV myocardium are shown on the bottom. The gross maximum B_1^+ (*Peak* B_I^+) was computed from TG and $B_{1\text{max,seq}}$, while minimum (*Min* B_I^+), maximum (*Max* B_I^+), and average (*Mean* B_I^+) maximum B_1^+ over LV were computed from TG, $B_{1\text{max,seq}}$, and $b_1(x,y)$. Table 1 contains all the statistical data (mean \pm SD) for maximum B_1^+ . The *Peak* B_I^+ for all 21 subjects was $0.189 \pm 0.017G$ while the minimum and maximum *Peak* B_I^+ were 0.157G and 0.224G, respectively. Maximum B_1^+ fields over LV in each column (*Min* vs. *Max* vs. *Mean*) were significantly different between each other (p < 0.05) while maximum B_1^+ fields in each row (a vs. b vs. c) were not significantly different.

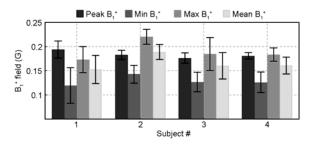

The reproducibility of maximum B_1^+ within the same subject was investigated in 4 healthy subjects. Five separate measurements were performed on different days with random orders. Only the medial short-axis slice was chosen. Fig 2 shows the maximum B_1^+ fields (mean \pm SD) for all 4 subjects. Max B_1^+ and Min B_1^+ were significantly different for all 4 subjects (p < 0.05) while Peak B_1^+ and Mean B_1^+ were not significantly different for subject 2 and 3. The statistical values (Peak B_1^+ , Min B_1^+ , Max B_1^+ , and Mean B_1^+) for each subject were not significantly different between each

Figure 1: (Top) Maximum B_1^+ field maps in one representative subject, and (Bottom) the histogram of corresponding gross (red line) and spatially varying maximum B_1^+ fields. Compared to what is reported in [3], all units are in Gauss, and reflect the maximum achievable B_1^+ with the given hardware.

	Base	Mid	Apex
$Peak B_I^+$	0.189±0.017 (0.157 - 0.224)		
$Min B_I^{\ +}$	0.139±0.032 ^a	0.134 ± 0.030^{b}	0.147±0.027 ^c
$Max B_1^+$	0.200±0.031 ^a	0.198 ± 0.029^b	0.192±0.026 ^c
$Mean B_1^+$	0.177±0.030 ^a	0.171 ± 0.028^b	0.172±0.024 ^c

Table 1: Maximum B_1^+ fields over the LV myocardium (base, mid, and apex) in 21 subjects. $Min \, B_1^+$, $Max \, B_1^+$, and $Mean \, B_1^+$ in each column were statistically different from each other (p < 0.05). All units are in Gauss.

Figure 2: The reproducibility test of maximum B_1^+ fields within the same subject.

subject, but were well within the boundary of the previous result in Table 1. This indicates the maximum B_1^+ fields can vary within the same subject as much as they do across different subjects. This may suggest the scan plane prescription can be an important factor in the maximum B_1^+ fields.

Discussion: We have shown that it is possible to utilize prescan information to map the maximum achievable B_1^+ in vivo. The prescan variables used in this work were specific to the GE systems, and other B_1 mapping methods could be incorporated to provide relative B_1^+ amplitude [5]. The knowledge of the available maximum B_1^+ field can increase the bandwidth of 180° pulses in spectroscopy reducing chemical shift errors, and can estimate how much to overdrive adiabatic pulses. In conclusion, the maximum B_1^+ in the chest (gross) was $0.189 \pm 0.017G$, and the maximum B_1^+ across the heart varied from $0.134 \pm 0.030G$ (-29%) to $0.200 \pm 0.031G$ (+5.8%) with body coil transmission on GE 3T systems. The repeated measurements performed on the same subjects showed the variability of maximum B_1^+ within the same subject was high.

References: [1] Barker GJ, et al. Br J Radiol 1998 [2] Cunningham CH, et al. MRM 2006, [3] Sung K, et al. JMRI 2008, [4] Schar M, et al. ISMRM 2008 p358 [5] Yarnykh VL. MRM 2007