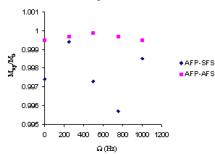
## Image Contrast Enhancement using Selective Adiabatic Pulses that Alternate Frequency Sweep Directions


## Z. Sun<sup>1</sup>, R. Bartha<sup>2,3</sup>, H. A. Park<sup>1</sup>, and S. Gnyawali<sup>1</sup>

<sup>1</sup>Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States, <sup>2</sup>Imaging Research Laboratories, Roberts Research Institute, London, Ontario, Canada, <sup>3</sup>Departments of Diagnostic Radiology and Medical Biophysics, University of Western Ontario, London, Ontario, Canada

**Introduction:** Selective adiabatic full passage (AFP) pulse trains with single frequency sweep (SFS) direction have been utilized to generate  $T_{2p}$  contrast in phantoms and human brains [1, 2]. Previous research also demonstrated that enhanced diffusion weighting can be produced using selective AFP pulse trains that alternate frequency sweep (AFS) direction [3]. Preliminary phantom experiments indicated that selective AFP-AFS pulse trains improved image contrast in phantoms in comparison to that of the selective AFP-SFS pulse trains [4]. However, up to date the contrasting mechanism for the AFP-AFS pulses is unclear, and the applicability of the AFP-AFS pulse trains for in vivo imaging is unknown. In this study, further theoretical and experimental work is performed to understand contrast enhancements generated by the selective AFP-AFS pulse trains.

Methods: Bloch equation simulation was conducted to evaluate the transverse magnetization magnitude generated by the AFP-SFS and AFP-AFS pulse trains using the NMRSIM from Bruker  $(M_x(0) = M_y(0) = 1/\sqrt{2}, M_z(0) = 0, B_1(max) = 2297.83 \text{ Hz}$ , pulse length (T<sub>p</sub>)= 4 ms, R-factor = 20, size of shape = 1000 points). Imaging experiments were performed on an 11.7 T Bruker Avance 500 microimaging system with a Bruker gradient coil utilizing a birdcage transmit/receive RF probe-head (ID = 2.8 cm). AFP-SFS and AFP-AFS pulse trains were constructed using four hyperbolic secant (HS<sub>1</sub>) AFP pulses with single- and alternate-frequency sweep directions in adjacent AFP pulses, respectively (R-factor = 20, size of HS<sub>1</sub> shape = 1000 points). A phantom comprised of a plastic tube (ID = 1.5 cm) and three glass vials (ID = 5 mm) was bounded together using paper tapes to form four compartments. The plastic tube was filled with a mixture of 10 micron ORGASOL polymer beads and 100 µM MnCl<sub>2</sub> dissolved in 5% agar and formed compartment 1 (C-1). The three vials contained 50, 100, and 150 µM MnCl<sub>2</sub> dH<sub>2</sub>O solutions and formed compartments 2 to 4 (C-2 to C-4), respectively. Single slice images were acquired from the phantom by varying the echo time (TE) using a customized SE sequence containing paired AFP-SFS/AFS pulse trains for signal intensity (SI) contrast measurements (contrast =  $|SI_{(C-1)}-SI_{(C-4)}|/|SI_{(C-1)}$  $_{10}+SI_{(C.4)}$ , TE = 50 – 90 ms in steps of 10 ms, TR = 2 s, FOV = 40 x 40 mm<sup>2</sup>, Matrix = 256 x 256, slice thickness = 5 mm, number of average = 1, number of dummy scans = 2, MLEV-4 phase cycling, scan time = 8 min 32 s). Single slice images were also collected in vivo from a C57B216 mouse model with middle cerebral artery occlusion (MCAO) 24 hours after the surgery using the customized SE sequence (TE/TR = 49/2000 ms, FOV = 25 x 25 mm<sup>2</sup>, Matrix = 128 x 128, slice thickness = 2 mm, number of average = 4, number of dummy scans = 2, MLEV-4 phase cycling, scan time = 8 min 32 s).

Results: Bloch equation simulation results (Fig. 1) indicated that the transverse magnetization magnitude (Mxy) generated by the AFP-



70 65 - 60 - 60 80 100 TE (ms)

A 4 3 B C D D

was stable close to the maximum value over the range of RF offset  $(\Omega)$ , whereas the Mxv produced value by the AFP-SFS pulse train

AFS pulse train

Figure 1. Simulated transverse magnetization magnitude  $(M_{xy}/M_0)$  generated by AFP-SFS/AFS pulse trains as a function of RF offset

Figure 2. Contrast generated by AFP-SFS/AFS pulse trains as a function of TE for the phantom.

Figure 3. Phantom and mouse brain images collected using AFP-SFS-SE (A, C) and AFP-AFS-SE (B, D) pulse sequences at TE = 80 ms (A, B) and TE = 49 ms (C, D).

fluctuated significantly and deviated from the maximum  $M_{xy}$  magnitude for different  $\Omega$ -values. Figure 2 demonstrated that image contrast increased significantly at greater TE values. Images in Figure 3 showed that greater image contrast was generated using the selective AFP-AFS pulse trains than that of the selective AFP-SFS pulse trains both in the phantom and in the stroke mouse model.

**Discussion:** Simulation results (Fig. 1) suggested that the paired AFP-AFS pulse trains is less susceptible to off-resonance effects associated with selective adiabatic refocusing pulses. Two effects generated by the AFP-AFS pulse trains jointly contribute to the image contrast enhancement. One is the signal sensitivity increase caused by accurate spin refocusing of the selective AFP-AFS pulse trains (Fig. 1). Another is the enhanced diffusion weighting generated by the cumulative nonlinear phase dispersion of the selective AFP-AFS pulse trains [3]. The former effect dominates in the restricted diffusion medium, such as C-1 in the phantom (Fig. 3B) and the stroke lesion in the mouse brain (Fig. 3D), whereas the latter effect becomes apparent in the free diffusion medium at longer TE, such as C-4 in the phantom (Fig. 3B).

**References and Acknowledgments:** [1] S. Michaeli, et al, J. Magn. Reson. 169 (2004) 293-299. [2] S. Michaeli, et al, Magn. Reson. Med. 53 (2005) 823-829. [3] Z. Sun, et al, J. Magn. Reson. 188 (2007) 35-40. [4] Z. Sun, et al, Proceedings of the 14<sup>th</sup> Annual Meeting of ISMRM, Seattle, WA, USA, 2005 (Abstract 2999). Thanks to the Small Animal Imaging Center at the Ohio State University for the MRI scan time.