Maximizing T2 Signal Weighting Generated by RF Excitation

M. Carl¹, M. Bydder², A. Takahashi¹, E. Han¹, and G. Bydder²

GE Healthcare, Applied Science Lab, Milwaukee, WI, United States, Radiology, University of California, San Diego, CA, United States

Introduction: Traditionally, T_2 weighting in MR is controlled by varying the sequence echo time (*TE*). Alternatively, T_2 contrast can be generated from the RF pulse itself (e.g. TELEX pulses [1]). In this work we study ways to maximize T_2 weighting generated by this mechanism. The absolute contrast between two tissues I and II with different T_2 s, which we will call ΔS , is given by:

$$\Delta S \equiv S^{I} - S^{II} \approx \left(\frac{\partial S}{\partial T_{2}}\right) \Delta T_{2} = \left(\frac{\partial S}{\partial \ln T_{2}}\right) \left(\frac{\Delta T_{2}}{T_{2}}\right) \equiv W\left(\frac{\Delta T_{2}}{T_{2}}\right) \quad \text{with} \quad W \equiv \left(\frac{\partial S}{\partial \ln T_{2}}\right) \quad (1)$$

where the sequence weighting W is evaluated at the average T₂ of the two tissues.

Single RF Pulse: For a single hard RF pulse of field strength B_1 ($\omega_1 = \gamma B_1$) and duration τ the signals in the presence of T_2 relaxation is given by Eq.2 [1] and the weighting W is given by Eq.3, where $\kappa \equiv \tau / T_2$ and $\theta = \gamma B_1 \tau$ is the nominal flip angle.

$$S = S_0 \frac{\omega_1}{\sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \exp\left(-\frac{\tau}{2T_2}\right) \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}}\tau\right) = S_0 \frac{\theta}{\sqrt{\theta^2 - \frac{\kappa^2}{4}}} \exp\left(-\frac{\kappa}{2}\right) \sin\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right)$$
(2)

$$W = S_0 \frac{\theta \exp\left(-\frac{\kappa}{2}\right)}{4\kappa \left(\frac{\theta^2}{\kappa^2} - \frac{1}{4}\right)^{\frac{3}{2}}} \left\{ \left[2\kappa \left(\frac{\theta^2}{\kappa^2} - \frac{1}{4}\right) - 1 \right] \sin\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right) + \sqrt{\theta^2 - \frac{\kappa^2}{4}} \cos\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right) \right\}$$
(3)

The fact that τ and T_2 always occur in a ratio (κ) implies that, for any given flip angle θ , the RF pulse duration τ controls the weighting in an analogous way to conventional T_2 weighting, where TE controls the conventional weighting function. Plots of signal (Eq.2) and weighting (Eq.3) as a function of log T_2 for different values of nominal flip angles and fixed τ are shown in Fig.1. The maximum weighting is largely independent of flip angle, which confirms that the RF duration effectively controls the contrast. The values of κ for which the weighting is maximized are displayed in Table I for selected values of θ :

θ	0° → 90°	180°	270°	360°
К	1.79 → 1.71	2.72	2.11	2.10
W	$0 \rightarrow 0.28$	0.08	0.38	0.03

Table I: Values of κ that maximize weighing for selected $\theta.$ The absolute maximum weighting occurs at 90° and 270° since they exhibit the largest total change in signal (Fig.1a). For typical excitation flip angles, the optimal RF duration is around 1.7-1.8 times the T_2 , however at higher flip angles the behavior is not straightforward.

Spoiled RF Pulse Train: The previous analysis considered the case of a single RF pulse with fully relaxed spins ($M_z = M_0$), which is equivalent to $TR >> T_1$. In practice, the longitudinal magnetization usually does not re-grow to its equilibrium value M_0 , so we now consider the case of a spoiled hard RF pulse train acquisition. Using a mathematical induction argument [2], the steady state magnetization can be shown to be given by Eq. 4 and is plotted in Fig.2a.

$$S = S_0 \frac{\theta(1 - E_1) \exp\left(-\frac{\kappa}{2}\right) \sin\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right)}{\sqrt{\theta^2 - \frac{\kappa^2}{4}} \left\{1 - E_1 \exp\left(-\frac{\kappa}{2}\right) \cos\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right) + \frac{1}{2\sqrt{\frac{\theta^2}{\kappa^2} - \frac{1}{4}}} \sin\left(\sqrt{\theta^2 - \frac{\kappa^2}{4}}\right)\right\}}$$
(4)

As before, the weighting may be calculated using Eq.1 and is plotted in Fig.2b vs. $\log T_2$. The T_2 at which W is a maximum is again largely independent of the flip angle, however now the value of κ depends on TR/T_1 . Surprisingly, the maximum for W occurs at the classical Ernst angle, since it exhibits the largest total change in signal (Fig.2a). A plot of the optimal κ with θ at the Ernst angle is shown versus TR/T_1 in Fig.3. Note that κ approaches 1.71 for high values of TR/T_1 (i.e. Ernst angle $\to 90^\circ$), as expected from Table I.

Conclusion: The purpose of this study was to maximize contrast generated by hard RF pulses for tissues with different T_2 values. The following guidelines apply: Single RF pulse: Use a flip angle of $\theta = 90^{\circ}$ and pulse duration $\tau = 1.71 \cdot T_2$ to shift the peak of W to the mean T_2 of the tissues.

SPGR RF pulse train: Use the classical Ernst angle for the T_1 and TR of interest and a pulse duration $\tau = \kappa \cdot T_2$ (κ shown in Fig. 3).

References: [1] M. S. Sussman et. al, MRM 40:890-899 (1998) [2] M. A. Bernstein, Handbook of MRI Pulse Sequences (2004).

