

Assessemnt of blood volume fraction using MRI: characterization in silico of possible bias

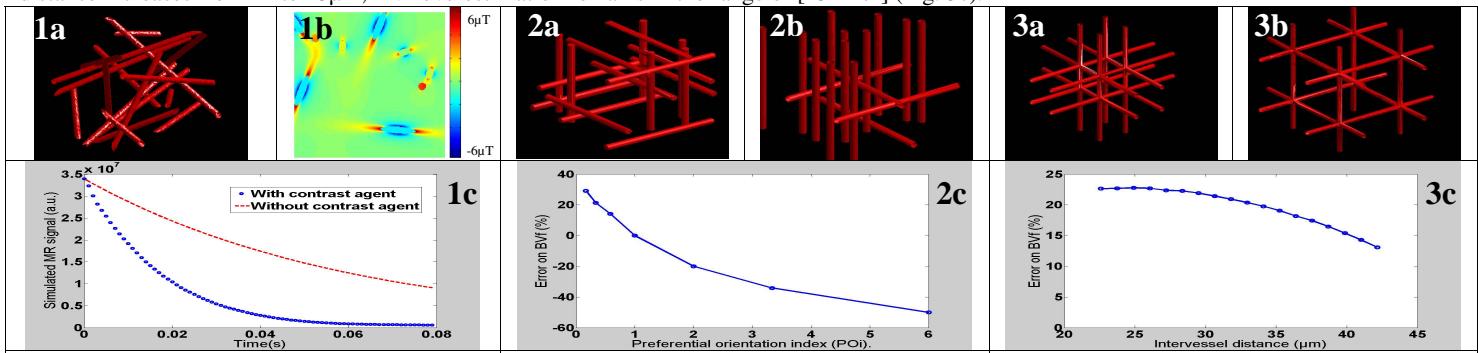
T. Christen^{1,2}, N. Joudiou^{1,2}, N. Pannetier^{1,2}, S. Reyt^{1,2}, C. Segebarth^{1,2}, C. Rémy^{1,2}, and E. L. Barbier^{1,2}

¹Inserm, U836, Grenoble, F-38043, France, ²Université Joseph Fourier, Grenoble Institut des Neurosciences, UMR-S836, Grenoble, France

Introduction

Several MR methods require a mathematical model of microvasculature to extract physiological parameters such as blood volume fraction (BV_f), vessel size index (VSI) and blood oxygen saturation. In the case of BV_f and VSI, MR estimates obtained in healthy and tumoral tissues – although well correlated with histology – seemed too large [1]. As tumoral development can strongly alter the geometrical characteristics of the microvascular network, the straight cylinder assumption generally made in MR simulations might become inadequate. In this study, we evaluate *in silico* how vessel density, vessel preferential orientation, vessel shape or curvature affect the MR estimate of BV_f . To obtain, *in silico*, MR estimates of BV_f from vessel networks that differed from combination of straight cylinders, we propose an original computation scheme based on [2] [3].

Material and methods


The steady-state MR approach to measure BV_f was simulated [4]. A cube of 125 μ m side length was considered (spatial sampling: 0.4 μ m). A diffusion coefficient ($D=10^{-9}\text{m}^2\text{s}^{-1}$) and a magnetic susceptibility – that of blood or of tissue – was associated to each point, using various vessel networks (common characteristics: $BV_f=3\%$ and vessel radius=3 μ m, Fig. 1a). The magnetic field distribution was computed at 4.7T using a Fourier based approach [2] (Fig. 1b). Relaxation and diffusion of water were accounted for using a deterministic approach [3]. The MR signal (i.e. the gradient echo transverse magnetization as a function of echo time, Fig. 1c) was computed. In absence of contrast agent, blood and tissue susceptibility were considered as equal (i.e. the effect of O_2 on the magnetic susceptibility is neglected). In presence of contrast agent, the blood susceptibility was 0.28ppm [4]. $BV_{f,MR}$ was eventually computed using: $BV_{f,MR}=3/(4\pi) \Delta R_2^*/(\gamma\Delta\chi B_0)$, were $\Delta\chi$ represent the change in blood susceptibility and γ the magnetogyric ratio for proton.

Simulations were performed in the Matlab environment. $BV_{f,MR}$ estimates were first obtained on distributions of straight cylinders to evaluate whether our approach was able to accurately determine the BV_f introduced into the simulation. Four types of simulations were then performed:

- Vessel shape was varied stepwise from straight to curved cylinder using a distribution of 900 cylinders with random orientations (no preferential orientation).
- Vessel shape was varied between cylinders, ellipsoids and spheres using a distribution of 900 cylinders without preferential orientation.
- The distribution of vessel orientation was varied between random distribution, 3 orientations (x, y, and z axes) with no preferential orientation, one preferential orientation (either parallel or perpendicular to B_0). For the latter, the fraction of vessels with a preferential orientation (preferential orientation index, POi) was varied from perpendicular (POi=0) to parallel to B_0 (POi= infinity). POi=(number of vessels parallel to B_0) / (number of vessels perpendicular to B_0 / 2). POi=1 corresponds to the absence of preferential orientation.
- Vessel density was varied by increasing the inter-vessel distance from 22 to 43 μ m, using a distribution of 12 cylinders in the three principal orientations and without preferential orientation (POi=1).

Results

Using straight cylinders as a reference, the proposed simulation approach provides a BV_f estimate with less than 2% error. Results of each simulation were: (i) Shape or curvature have minimal influence on results (<5%) except for the limit case of spherical shape (15%). (ii) Random and three direction distributions of vessel orientations (Fig. 2a) provide the same accurate estimates of BV_f . A larger amount of vessels orientated perpendicularly to B_0 yields a BV_f overestimation (POi<1); a larger amount of vessels orientated along B_0 (POi>1)(Fig. 2b) yields a BV_f underestimation (Fig. 2c). (iv) For an intervessel distance of about 30 μ m (healthy gray matter value), BV_f is overestimated by 20%. As intervessel distance increases from 22 to 43 μ m, BV_f overestimation remains in the range of [23-14%] (Fig. 3c).

Figure 1. (a) Example of a 3D vessel network. (b) Simulated magnetic field intensity at 4.7T in a plane across a microvascular network. (c) Transverse magnetization vs. echo time with (blue) and without (red) an intravascular contrast agent ($\Delta\chi=0.28\text{ppm}$).

Figure 2. (a) Isotropic and (b) anisotropic distributions of vessel orientations. (c) Error on BV_f as a function of the preferential orientation index (POi).

Figure 3. (a-b). Example of vessel distributions with different intervessel distances. (c) Error on BV_f as a function of intervessel distance.

Conclusion

This study suggests that the proposed simulation approach can be used to obtain MR estimates of BV_f *in silico*. BV_f estimates do not seem to be affected by either vessel shape or vessel curvature. The impact of preferential vessel orientation the MR estimate of BV_f suggests that vessel orientation should be further characterized *in vivo*, especially in pathological tissues like brain tumors. Finally, this study indicates that the MR estimate of BV_f is overestimated by about 20% for normal intervessel distances. This systematic error on BV_f estimate could be due to the interaction between the magnetic susceptibility gradients originating from neighbour cylinders.

References [1] S Valable et al, *NMR Biomed*, 2008. [2] J. P. Marques and R. W. Bowtell, *NMR Biomed*, 2007. [3] L. M. Klassen and R. S. Menon, *Biophys J*, 2007. [4] I Tropriès et al. *Magn Reson Med*, 2001.