Fluorine-19 based MR imaging tracer 19FIT for drug dilvery research.

X. Liu¹, Z-X. Jiang², Y. B. Yu², and E-K. Jeong³

¹Physics, University of Utah, Salt Lake City, UT, United States, ²Bioengineering, University of Maryland, College Park, MD, United States, ³Radiology, University of Utah, Salt Lake City, UT, United States

Introduction: Fluorine-19 is a promising reporter for drug delivery research because of its high NMR sensitivity, 100% natural abundance and minimal background interference from human body. However, MR imaging of most fluorinated compounds suffers from low signal intensity caused by low quantity, long T_1 , and multiple chemical shifts, and low hydrophilicity causes long retention time which might increase the toxicity. To address these issues, we present a ¹⁹F based multifunctional drug delivery vehicle ¹⁹Fluorine Imaging Tracer (¹⁹FIT). Our ¹⁹FIT contains 27 ¹⁹F nuclei in each molecule with identical chemical shift [1]. Its relatively short T_1 (253.3±25.0 ms in solution and ~370 ms in vivo at 3 T) of our compound allows for increased signal averages in unit scan time and its short retention time reduce the toxicity risk.

Methods: Phantom and animal studies were performed on a Siemens 3T Trio clinical MRI system (Siemens Medical Solution, Erlangen, Germany). A home built double tuned saddle coil was used to detect ¹H and ¹⁹F signals at 123.22 MHz and 115.94 MHz, respectively. Four 16-week old male BALB/C white mice were used in the animal study. Two mice received 400 μl 150 mM ¹⁹FIT (2.2 mmol/kg ¹⁹FIT concentration, 60 mmol/kg ¹⁹F concentration) and two mice received 200 μl saline and 200 μl 150 mM ¹⁹FIT (1.1 mmol/kg ¹⁹FIT concentration, 30 mmol/kg ¹⁹F concentration) through the tail vein. ¹H images were acquired by 3D FLASH pulse sequence with 0.4×0.4×0.4 mm³ spatial resolution, 100×50 mm² FOV, 7.73 ms TR, 2.74 ms TE, 25° flip angle, 150 Hz/pixel bandwidth, 2 averages and 1 min 11 sec imaging time; ¹⁹F images were obtained at the same location by a GRE pulse sequence with 1.5×1.5×3.0 mm³ spatial resolution, 192×96 mm² FOV, 400 ms TR, 2.98 ms TE, 90° flip angle, 260 Hz/pixel bandwidth, 16 averages and 5 min 9 sec imaging time. To assess the total fluorine amount of ¹⁹F, whole body spectra were acquired using FID pulse sequence with 8 averages, 100 kHz bandwidth, 0.15 ms TE and 1600 ms TR. *In-vivo* T₁ of ¹⁹FIT was also measured using series of whole body FID signals with various recovery times of 200, 400, 800, 1600, 3200 ms. Animals were monitored over a month period after the experiment.

Results and Discussions: T_1 values of ¹⁹FIT was obtained from both phantom experiment and animal experiment, T_1 of ¹⁹FIT solution in vial was 253.3 \pm 25.0 ms and in vivo T_1 of ¹⁹FIT from one mouse with 1.1 mmol/kg ¹⁹FIT was 393.1 \pm 48.0 ms, 368.2 \pm 5.9 ms, 420.9 \pm 83.8 ms and 314.3 \pm 52.8 ms for time 0, 4 hours, 8 hours and 24 hours after the injection. The prolonged T_1 of ¹⁹FIT in vivo is possibly caused by the altered molecular

rotational motion of the compound *in-vivo*. ¹⁹F MR images are overlaid onto the proton MRI at various time points in Fig. 1, for a mouse that received 2.2 mmol/kg ¹⁹FIT. These overlaid images clearly demonstrate the distribution and clearance process in different organs such as heart, liver and bladder.

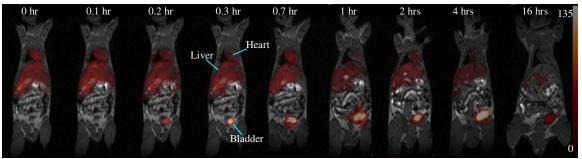
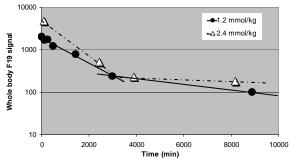


Figure 1. ¹⁹F images overlaid on the ¹H MRI at various time points for a mouse received 2.2 mmol/kg ¹⁹FIT.


After the 16-hour time point, one more fluorine image was taken on 40-hour time point, the fluorine signal was on the noise level and not able to be detected. Plots in Fig. 2 demonstrate the clearance patterns of ¹⁹F NMR in two mice (2.2 mmol/kg and 1.1 mmol/kg ¹⁹FIT) over time. After two days, signals dropped down to 1/10 for both mice; six days later residual signals were 1/26 and 1/20 of the original amount for 2.2 mmol/kg and 1.1 mmol/kg respectively. The total detectable ¹⁹F compounds were 0.085 mmol/kg and 0.055 mmol/kg for initial dosages of 2.2 mmol/kg and 1.1 mmol/kg, respectively. The plots indicate that the signal intensities of both dosages clearly follow a double exponential decay functions. Data was fitted to a double exponential decay function. Decay constants for the mouse with 2.2 mmol/kg ¹⁹FIT were 1148.7 and 6996.1 min. and those for the mouse with 1.1 mmol/kg ¹⁹FIT were 1053.5 and 17722.8 min.

No death or dramatic reduction in body weight was observed within 4 weeks after the injection of ¹⁹FIT, which indicates our ¹⁹FIT has no prominent toxic effects over a month.

Perfluoro-15-crown-5-ether was used as the comparison. With a dosage of $^{19}\mathrm{F}$ nuclei equivalent to 400 μl 150 mM $^{19}\mathrm{FIT}$ or 2.2 mmol/kg, $^{19}\mathrm{F}$ signal was on the noise level on the images because of the long <code>in-vivo</code> T₁ of 1.15 s; with three times higher dosage, during first several hours after the injection, most of the signal was founded in the liver area and no obvious signal intensity change was observed.

Conclusion: ¹⁹F based drug delivery vehicle ¹⁹FIT combined with ¹⁹F MR imaging facility on 3T clinical MR scanner has been investigated. The advantages of ¹⁹FIT over other fluorine compounds, such as high and singlet fluorine signal, short T_1 and short *in vivo* retention time, make ¹⁹FIT to be a perfect ¹⁹F based reporter molecule for drug delivery research.

Acknowledgement: This work was supported by VP Seed Grant of University of Utah, Margolis Foundation and the Maryland Nano-Biotechnology Fund. **Reference:** [1] Z.X. Jiang, Y.B. Yu. *Tetrahedron.* 2007, 63, 3982–3988.

Figure 2. Plot of whole body fluorine signal versus time for 2 mice received 2.2 mmol/kg and 1.1 mmol/kg ¹⁹FIT separately.