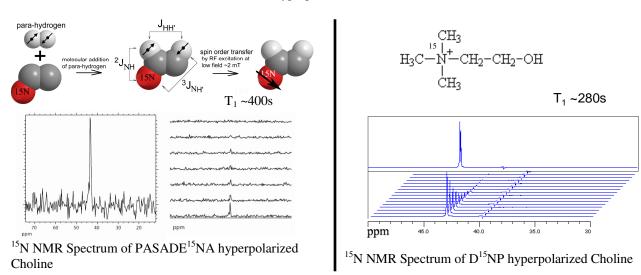
Hyperpolarized ¹⁵N MR: PASADE ¹⁵NA & D¹⁵NP

P. Bhattacharya¹, S. Wagner¹, H. R. Chan¹, E. Y. Chekmenev¹, W. H. Perman², and B. D. Ross³


¹Enhanced MR Laboratory, Huntington Medical Research Institutes, Pasadena, CA, United States, ²School of Medicine, St. Louis University, St. Louis, MO, United States, ³Enhanced MR Laboratory, Huntington Medical Research Institutes, Pasadena, Pasadena, CA, United States

Background & Purpose: Several significant biological and biomedical questions have been addressed by use of ¹⁵N MR. However, structural ¹⁵N NMR is hampered by the need for complex chemical substitutions and ¹⁵N enriched biomedical applications which are time consuming, limited by enzyme flux measurements of mmoles over seconds to minutes. Hyperpolarization of ¹⁵N by Parahydrogen And Synthesis Allows Dramatically Enhanced Nuclear Alignment (PASADENA) and Dynamic Nuclear Polarization (DNP) was explored as a means of broadening the biomedical utility of ¹⁵N MR imaging and spectroscopy.

Results: A. An unsaturated precursor of ¹⁵N-choline, a known biomarker of many human cancers was synthesized and subsequently hyperpolarized by PASADE¹⁵NA to generate hyperpolarized ¹⁵N-choline. Compared to hyperpolarized ¹³C choline, T₁ (longitudinal relaxation time) of ¹⁵N choline was carefully extended so that a second biomarker, choline kinase enzyme flux could potentially be determined *in vivo*. Preliminary *in vivo* applications of ¹⁵N hyperpolarization towards cancer imaging in rodent models will be demonstrated.

B. $D^{15}NP$ hyperpolarization has also resulted in high levels of hyperpolarization on ^{15}N labeled choline, glutamine, ATP and nucleotides like adenosine and cytosine with relatively long T_1 times. Hyperpolarization of these metabolites has permitted acquisition of single shot ^{15}N MR spectra.

The long T₁ times of ¹⁵N molecules compared to that of ¹³C will provide longer imaging and spectroscopic time window (5X T₁ which translates to over 7 mins in case of hyperpolarized ¹⁵N Choline) to observe and monitor metabolic events.

The different values of T_1 s of Choline hyperpolarized by two methods is due to the fact that the methyl groups are deuterated in the PASADENA precursor of 15 N Choline.

Conclusions and outlook: Specific advantages of ¹⁵N NMR over ¹³C NMR can now be exploited by hyperpolarization. High resolution fast MR and chemical shift imaging of ¹⁵N-labeled metabolites can have significant impact in the understanding of urea cycle, glutamine-glutamate and choline metabolism *in vivo*. Furthermore, hyperpolarized ¹⁵N NMR can be utilized for structure elucidation of proteins and oligonucleotides.

Acknowledgements: We thank the following for funding: Tobacco Related Disease Research Program 16KT-0044, NIH/NCI R01 CA 122513, 1R21 CA118509, 1K99CA134749-01, Rudi Schulte Research Institute, James G. Boswell Fellowship, American Heart Association, American Brain Tumor Association and Prevent Cancer Foundation. Oxford Biotools for help in acquiring DNP data.

References: Bhattacharya, P. & Ross, B. D. (2008) "Hyperpolarized ¹⁵N NMR: D¹⁵NP and PASADE¹⁵NA" *Handbook of Neurochemistry and Molecular Neurobiology*, Vol 4, 2008, in press