

Hyperpolarized ^{13}C MRS in the Rat Brain: Spectral Improvements with ^1H Decoupling

M. Marjanska¹, D. K. Deelchand¹, I. Iltis¹, and P-G. Henry¹

¹Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States

Introduction

Most *in vivo* studies using the dynamic nuclear polarization (DNP) technique (1) to enhance sensitivity of ^{13}C have been utilizing molecules with ^{13}C labeled quaternary carbons. In the most often used $[1-^{13}\text{C}]$ pyruvate, ^{13}C labeled carbon does not have any ^1H attached to it and experiences only small J -coupling with ^1H 's three bonds away. In case of $[2-^{13}\text{C}]$ pyruvate and $[1-^{13}\text{C}]$ lactate, ^{13}C labeled carbon also does not have any ^1H attached to it, but it is J -coupled to ^1H 's which are two bonds away. The J -coupling structure can be very useful for providing qualitative molecular structure information. However, for *in vivo* application, this splitting structure is undesirable since J -splittings distribute signal intensity over many smaller peaks and therefore reduce detection sensitivity. In this work, we investigate the effects of heteronuclear J -coupling on hyperpolarized $[1-^{13}\text{C}]$ pyruvate and $[2-^{13}\text{C}]$ pyruvate signals and their metabolic products.

Methods

A mixture of $[1-^{13}\text{C}]$ pyruvic acid and OX63 trityl radical and $[2-^{13}\text{C}]$ pyruvic acid and OX63 trityl radical were hyperpolarized by DNP (Hypersense, UK) for 90 min in a field strength of 3.35 T at approximately 1.4 K (1). The sample was then dissolved in 40 mM TRIS buffer, 40 mM NaOH and 0.32 mM Na₂EDTA solution to produce 4 mL of hyperpolarized solution at a concentration of ~35 mM. *In vivo* experiments were performed using a 9.4-T/31-cm bore magnet equipped with a Varian INOVA spectrometer. Fasted male Sprague-Dawley rats were injected intravenously with approximately 2.2 mL of hyperpolarized $[1-^{13}\text{C}]$ pyruvate or $[2-^{13}\text{C}]$ pyruvate under isoflurane anesthesia.

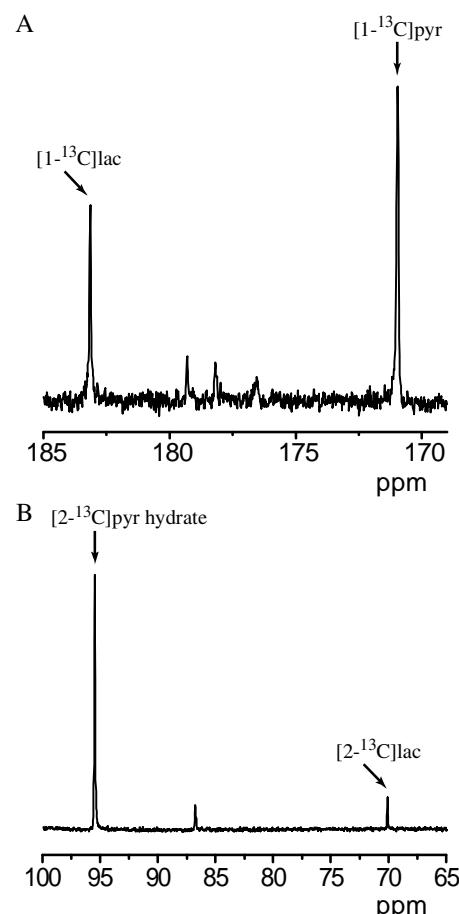
In vivo ^{13}C NMR spectra were acquired using a coil assembly consisting of a ^1H quadrature surface coil (two loops of 14 mm diameter) and an inner ^{13}C linearly polarized surface coil (12 mm diameter). A small sphere filled with ^{13}C labeled formic acid placed at the center of the coil served as external reference. Decoupled and undecoupled spectra were acquired one after another 10 s after injection of a hyperpolarized $[1-^{13}\text{C}]$ pyruvate solution with LASER sequence (2) adapted for ^{13}C spectroscopy and using a 45° BIR4 pulse for excitation. The ^1H decoupling was performed using WALTZ-16.

Results and Discussion

Figure 1 shows representative spectra obtained with ^1H decoupling from 400 μL voxel placed in the rat brain. Table 1 reports the effects of decoupling on linewidths. The linewidth of $[1-^{13}\text{C}]$ pyruvate signal was narrower by 1.2 ± 0.3 Hz with decoupling and $[1-^{13}\text{C}]$ lactate signal by 6.3 ± 0.6 Hz.

Table 1. Effects of decoupling on linewidths reported in Hz (4 animals, 10 dissolutions).

Undecoupled linewidths		Decoupled linewidths		Difference in linewidths	
$[1-^{13}\text{C}]$ pyr	$[1-^{13}\text{C}]$ lac	$[1-^{13}\text{C}]$ pyr	$[1-^{13}\text{C}]$ lac	$[1-^{13}\text{C}]$ pyr	$[1-^{13}\text{C}]$ lac
7 ± 1	12.8 ± 0.9	6 ± 1	6.4 ± 0.6	1.2 ± 0.3	6.3 ± 0.6


The effect of decoupling on SNR was difficult to determine *in vivo* due to the loss of magnetization caused by a 45° BIR4 excitation pulse. Therefore, to obtain information about effects of decoupling on SNR simulations were performed using values of long-range J -couplings and assuming a linewidth of 6 Hz, consistent with *in vivo* data. The effects of decoupling on SNR are reported in Table 2. There was almost no improvement in SNR for $[1-^{13}\text{C}]$ pyruvate signal. Decoupling improved SNR for $[1-^{13}\text{C}]$ lactate signal by 50%. The improvement in SNR was even greater for $[2-^{13}\text{C}]$ pyruvate and $[2-^{13}\text{C}]$ lactate signals. The larger improvement for $[2-^{13}\text{C}]$ lactate signal was expected due to the large value of one bond J -coupling. The improvement in the linewidth in the simulations was consistent with experimental data (Table 1).

Conclusions

^1H decoupling significantly improved the linewidth and signal-to-noise ratio of $[1-^{13}\text{C}]$ lactate, $[2-^{13}\text{C}]$ pyruvate and $[2-^{13}\text{C}]$ lactate. Negligible improvement was observed for $[1-^{13}\text{C}]$ pyruvate, consistent with very small three bond J -coupling.

Acknowledgements: The authors thank Chris Nelson and Manda Vollmers for technical support. This work was supported by NIH grants: RR08079 and P30 NS057091, and the W. M. Keck Foundation.

References: 1. Abragam and Goldman, *Rep Prog Phys* 1978. 2. Garwood *et al.*, *J Magn Reson* 2001.

Figure 1. Representative localized spectra obtained after injection of hyperpolarized (a) $[1-^{13}\text{C}]$ pyruvate and (b) $[2-^{13}\text{C}]$ pyruvate solutions with ^1H decoupling from 400 μL brain voxel (LASER, $T_R = 0.75$ s, $T_E = 27$ ms, $lb = 1$ Hz).

Table 2. Effects of decoupling on SNR reported as ratio of decoupled to undecoupled SNR.

$[1-^{13}\text{C}]$ pyr	$[1-^{13}\text{C}]$ lac	$[2-^{13}\text{C}]$ pyr	$[2-^{13}\text{C}]$ lac
1.01	1.51	1.85	2.61