

PROTON METABOLITE B1-CORRECTED T1 MAPPING IN THE HUMAN BRAIN AT 3 TESLA

R. Fleysher¹, L. Fleysher¹, D. Hess¹, B. Soher², S. Liu¹, and O. Gonen¹

¹NYU School of Medicine, New York, NY, United States, ²Duke University, Durham, NC, United States

Introduction: Although $TR \approx 1.2T_1$, optimizes the SNR/unit time for a $\theta=90^\circ$ flip-angle (1), the unknown metabolites T_1 distribution, as well as 20-40% radio-frequency field (RF, \mathbf{B}_1) variations in the human brain (2), reduce the accuracy of quantitative proton MR spectroscopy (^1H -MRS). In this study we investigated the regional *N*-acetylaspartate (NAA), creatine (Cr) and choline (Cho) T_1 s in several gray and white matter (GM, WM) brain structures of the healthy human brain at 3 T. To correct for the effect of \mathbf{B}_1 variations on the accuracy of the T_1 s we used the TriTone three-point protocol that optimizes their precision/unit-time (3), in three dimensional (3D) ^1H MRS that allowed extensive ($\sim 25\%$ of the brain) coverage at (1.0 cm) 3 spatial resolution. We tested two implicit assumptions often made: First, that the *inter*-subject metabolite T_1 distributions are similar and need not be measured every time. Second, that T_1 s are similar enough that one value per metabolite suffices for accurate metabolic quantification for all brain regions.

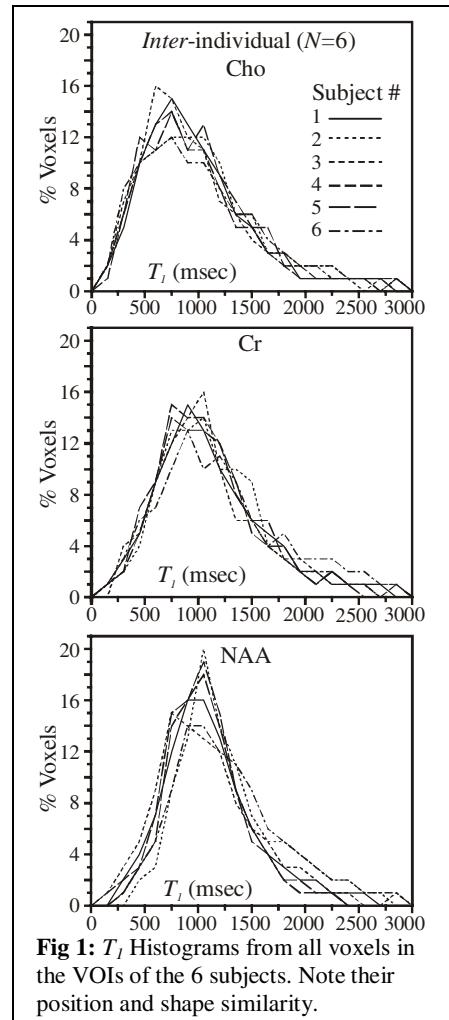
Methods: Six healthy adults (3 male) 23 to 29 (mean 27) years old were recruited and gave written consent. All experiments were done in a 3T scanner (Siemens, Erlangen, Germany) using a transmit-receive head coil (MRInstruments, Minneapolis MN).

Following axial and sagittal MRI, a $10_{\text{AP}}\text{ cm} \times 8_{\text{LR}}\text{ cm} \times 4.5_{\text{IS}}\text{ cm}$ VOI was graphically prescribed, shimmed and excited using $TE=41\text{ ms}$ PRESS. The three-point TriTone that varies all acquisition parameters to yield the maximum precision per total experiment time prescribed: $TR_1=1000\text{ ms}$, $\theta_1=105^\circ$, $TR_2=1100\text{ ms}$ (17 min.); $\theta_2=30^\circ$ (19 min.); and $TR_3=4900\text{ ms}$, $\theta_3=125^\circ$, $N_3=1$ (84 min.) with $N_1=N_2=N_3=1$ average at each point. The entire protocol took just under 2 hours, inclusive.

Results: The \mathbf{B}_1 -corrected T_1 s observed across the 3520 voxels (6 subjects \times 320 voxels each, plus one subject's six serial scans) were: NAA, 1233 ± 21 , Cr, 1240 ± 18 and Cho, $1115 \pm 16\text{ ms}$ [mean \pm standard error of the mean (SEM)]. Their *intra*- and *inter*-subject T_1

histograms, shown in **Fig. 1**, exhibit excellent similarity in both peak position and overall shape, characterized by the SEM of their FWHM divided the FWHM, of

		NAA (ms)	Cr (ms)	Cho (ms)
GM	Caudate	1454 ± 122	1562 ± 136	1374 ± 230
	Thalamus	1366 ± 97	1333 ± 80	1064 ± 58
	Putamen	1364 ± 64	1354 ± 112	1339 ± 124
	GM Average	1395 ± 30	1416 ± 73	1259 ± 98
WM	Splenium of CC	1193 ± 67	1094 ± 193	1003 ± 85
	Centrum semiovale	$^{a}1267 \pm 73$	$^{a}1227 \pm 74$	$^{a}1017 \pm 37$
	WM Average	1230 ± 37	1161 ± 66	1010 ± 7


Table 1: Mean \pm SEM values of proton T_1 s at 3 T in the various GM and WM brain regions and structures studied.

3.7%, 2.8% and 3.9%. These suggest the *inter*- as well as the *intra*-subject T_1 reproducibility to be better than 4%. The mean metabolite T_1 s in five different brain structures, are compiled in **Table 1**. They show the NAA, Cr and Cho T_1 s to be similar within GM and within WM but to also be significantly (15 - 20%) longer in the latter.

Discussion and Conclusion: The results show that the human brain \mathbf{B}_1 -corrected T_1 s at 3 T are gratifyingly reproducible. Their variations between several WM and GM structures in a cohort of healthy young individuals indicate that for purposes of metabolic quantification expedient use of one (global average) T_1 value for each metabolite is justifiable in that it is sufficient to reduce the level of fluctuations that result from residual T_1 -weighting to below the voxel SNR. The *inter*-subject overlap of the T_1 histograms for these metabolites indicates that they are likely characteristic to within very few percent (at least) among healthy young individuals of both genders and therefore, individual T_1 measurements may be unnecessary since they should not yield different results.

References

1. Goelman G, *et al.* Magn Reson Med 2006;56(1):34-40.
2. Vaughan JT *et al.* Magn Reson Med 2001;46(1):24-30.
3. Fleysher R *et al.* Magn Reson Imaging 2008;26(6):781-789.

Fig 1: T_1 Histograms from all voxels in the VOIs of the 6 subjects. Note their position and shape similarity.