Which pulse sequenceisoptimal for myo-Inositol detection at 3T?
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I ntroduction

Myo-inositol (ml) is a cyclic sugar alcohol found in the brain. Although its concentration is high (up to 8mM), repeatable measurements of its
concentration are difficult. Multiple acquisition strategies were proposed in the past to increase the reproducibility of ml measurements. These
strategies either selectively boost the ml signal (usually by reducing ml signal evolution under J coupling), or selectively reduce the overlapping,
background resonances. While all such strategies have compelling arguments in their favor, they also have flaws. It is difficult to increase the ml
signal without also increasing the signal of the overlapping resonances; it is also difficult to decrease the background signal without also decreasing
the ml signal to low levels. It is therefore not immediately straightforward to decide which of the proposed approaches yields the most accurate and
reproducible ml measurements. Monte Carlo simulations are presented here for a number of pulse sequences to decide which approach results in
improved repeatability and accuracy of ml measurements. Pulse sequences considered include a TE=35ms PRESS pulse sequence (defined as the
clinical standard), a very short TE PRESS pulse sequence [1], a Carr-Purcell echo train (CPRESS) [2], an optimized STEAM sequence [3], a zero
quantum filter (ZQF) [4] and a single quantum filter (SQF) [5], whose timings were numerically optimized in this work for improved ml detection.
Simulation results, validated in vivo, showed that a CPRESS sequence offers the most reliable mI measurements at 3T.

Methods

The response of the 14 most important brain metabolites to a number of pulse sequences was individually computed using the GAMMA libraries.
These 14 spectra, weighted according to their reported in vivo concentration, together with simulated residual water and macromolecule signals were
added together to simulate a human brain. Noise was then added to the resulting “brain” signal, and the data was fit using LCModel. The process was
repeated 1000 times for each pulse sequence, while using different noise seeds; the resulting fitted ml concentration was saved for each run. Two
separate noise levels were considered in our simulations: one corresponding to a standard clinical acquisition (a 5 min acquisition from a 8cc voxel)
and the second one corresponding to double the signal to noise (SNR) of the standard clinical acquisition.

Results
Tables 1 and 2 present a measure of repeatability (the coefficient of variation expressed as a percentage, %CV) and accuracy (defined as the average
measured concentration minus the known input concentration divided by the known input concentration) for (mI+Gly) and ml levels, for all ten pulse
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measurements at 3T. Five classes of pulse sequences, 4 previously suggested for
optimized ml detection (a short TE PRESS, a CPRESS sequence, a STEAM
sequence, and an optimized ZQF), and one optimized for ml detection in this work (a SQF) were compared to a standard PRESS TE=35ms pulse
sequence. The results of the simulations, indicating more repeatable ml measurements with a Carr-Purcell sequence, were validated in vivo.

Table 2: Simulation results at twice the clinical SNR level.
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