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I ntroduction

A well-known characteristic of malignant glioma is an increase in cell density with increasing malignancy of the tumor. In a previous study [1], we explored the
relationship between multiexponential T, and cell density in a simple model of astrocytoma cells suspended in agarose at different cell densities. Using Non-Negative
Least Squares (NNLS), we were able to fit two T, components to pure agarose and three T, components to samples with cells. The longest T, component significantly
decreased with increasing cell density, but the associated percentage of signal did not have a significant relationship with cell density. Additionally, the component was
sporadically fit amongst the different cell density samples and only 1/5 of the samples had a long component that contributed more than 10% of the signal. The
coefficients of variance for the long component (0.28+0.26) were larger than that of the more stable medium (med) component (0.08+0.06) for four of the five cell
densities. Because of the variability, we were not sure if the long component truly arose from a real compartment within the sample or if it was the result of
measurement errors. In the current study, we investigated the reproducibility of measuring the long T, component and established criteria of acceptance for components
fit with NNLS in these studies. We then used the criteria to verify the number of components associated with pure agar and pure cell samples. Further, we doped a pure
cell sample with gadolinium to determine if any component was associated with the extracellular compartment.
Methods
SAMPLE PREP: Low melting point agarose (Sea Prep, Lonza, Basel, Switzerland) was made with D,O based phosphate buffered saline (D-PBS) and TSP/D,0 to create
1.5%, 2.0%, 2.5%, and 3.0% (w/v) solutions. We performed NMR studies in triplicate to test the reproducibility of the T, fit. Cultured genetically engineered
astrocytoma cells[2] were trypsinized, washed in D-PBS, and centrifuged at 400xg at 5°C. For the different gadolinium (Gd) concentrations (0.1 and 0.2mM), the
cells were washed in gadopentetate dimeglumine (Berlex, Montville, NJ) diluted with D-PBS. Each sample type (cells or agarose) was transferred to a dual-open-ended
Smm NMR tube with susceptibility matched plugs (New Era, Vineland, NJ). Each agar sample was placed on ice and allowed to gel for at least 2 hours prior to being
analyzed. NMR MEASUREMENTS: All NMR experiments were performed at 10°C on a S00MHz Varian spectrometer. CPMG experiments were executed using 64
TEs linearly spaced between 10ms and 1270ms, TR=10s, NEX=2. DATA ANALYSIS: The water peak integrals were measured at 4.9ppm using ACD (Toronto, Canada)
and were used to construct T, decay curves. The resulting exponentials were analyzed using the

Table 1 Non-Negative Least Squares (NNLS) [3,4] algorithm in MATLAB (MathWorks, Natick, MA).
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CELLSAND GADOLINIUM: Using our
threshold, only 2 of the 3 components from our previous cell density study (“med” and “short”) were fit for packed cell samples washed in D-PBS with no contrast
agent or with 0.1mM Gd (Figures 1 and 2). For 0.2mM, only the short component was fit. The “med” T, (Figure 1) decreased with increasing Gd concentration and
was not fit for the maximum Gd concentration. Additionally, the “med” T, signal fraction (Figure 2) also decreased with the addition of Gd. Taken together, these
results suggest that the “med” component was exposed to the contrast agent in the extracellular compartment. The short T, value (Figure 1) was stable (119+8ms)
amongst all concentrations of Gd. The signal fraction increases slightly with the addition of Gd and is responsible for the entire signal at 0.2mM. These results suggest
that the short component was not exposed to the Gd in the extracellular compartment.
Conclusions
Using a threshold of 12% signal fraction from NNLS, we can reproducibly measure one component from agarose and two from cells. The longer (“‘med”) component
from the cells appears to interact with the extracellular compartment. This study shows the utility of identifying cellular compartments with unconstrained algorithms
such as NNLS but underscores the necessity of determining thresholds of acceptance of the indentified components.
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