

Mitochondrial dysfunction induces mobile lipids and lipid droplet formation: role of lipid and glucose metabolism monitored by ^1H and ^{13}C -edited ^1H MRS in intact HuT 78 lymphoblastoid cells

E. Iorio¹, C. Testa², F. De Luca³, C. Casieri⁴, E. Lococo⁵, R. Carnevale⁵, A. Stringaro⁶, M. Condello⁶, G. Arancia⁶, L. Lenti⁵, L. Lenti⁵, R. Strom⁷, and F. Podo¹

¹Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy, ²University of Bologna, Italy, ³Physics, University La Sapienza, Roma, Italy, ⁴University of L'Aquila, L'Aquila, Italy, ⁵Experimental Medicine and Pathology, University La Sapienza, Roma, Italy, ⁶Technology and Health, Istituto Superiore di Sanità, Rome, Italy, ⁷Cellular Biotechnologies and Haematology, University of La Sapienza, Rome, Italy

Introduction

Several studies have reported the detection of narrow mobile lipids (ML) signal in ^1H MR spectra of intact cells under different physiological conditions, such as lymphocyte activation, differentiation and apoptosis.

Combined ^1H and ^{13}C MR spectroscopy (MRS) provides powerful methods to elucidate biochemical pathways and monitor metabolic fluxes in biological systems.

In this work we used *a*) ^1H MRS to investigate the biochemical nature of ML formation in a lymphoblastoid cell line after treatment with the complex III inhibitor of mitochondrial electron transport antimycin A (AMC-A) and *b*) a *J*-editing approach for the indirect detection of ^{13}C nuclei, to monitor alterations of ^{13}C label fluxes from $[1-^{13}\text{C}]$ -glucose to glycolytic intermediates and to ML formed after AMC-A-induced mitochondrial impairment.

Methods

HuT 78 cells were exposed to AMC-A (5 $\mu\text{g}/\text{ml}$) either in complete medium or in medium containing 5mM $[1-^{13}\text{C}]$ -glucose. Exposure to AMC-A (24 h) did not alter cell viability nor induced apoptosis (<5%). MRS experiments were performed on intact cells and their extracts (organic and aqueous phases) on a Bruker Avance 400 spectrometer using a ^1H -X multinuclear inverse probehead. Samples were analysed by both ^1H MRS and a double resonance $\{^{13}\text{C}\}-^1\text{H}$ technique which allows the detection of the only protons *J*-coupled to ^{13}C nuclei by a sequence called T-Sedor [Casieri et al. *Chem Phys Lett* 338: 137-141, 2001]. This technique combines good sensitivity and chemical resolution which allow short measurement time to monitor the ^{13}C -glucose metabolism *in vivo*.

Lipid bodies were detected by transmission electron microscopy (TEM) in cells. Lipid analyses were performed by thin layer chromatography on cell extracts.

Results and discussion

After 24h AMC-A treatment, ^1H MR spectra of intact cells showed an over 10-fold increase in the ML $(\text{CH}_2)_n$ signal at 1.29 ppm and a well visible $\text{CH}=\text{CH}$ signal at 5.35 ppm. TLC and TEM analyses confirmed a strong accumulation of neutral lipids assembled in intracellular lipid bodies. Analyses on organic phase extracts confirmed a strong accumulation of neutral lipids, while spectra of aqueous extracts showed an increase in glycerophosphorylcholine, likely due to phospholipase(s)' activity. Cells treated with Amc-A maintained capability of ATP production, attributed to enhanced glycolytic activity.

T-Sedor spectra of AMC-A treated cells showed incorporation of ^{13}C label into $(\text{CH}_2)_n$ and CH_3 of ML signals, a 3-fold increase in the $[3-^{13}\text{C}]$ -lactate resonance and in $\{^{13}\text{C}\}-^1\text{H}$ signals in the region between 3.5 and 4.0 ppm. Analyses of cell extracts discriminated in AMC-A treated cells the labelling of glycero-3-phosphate, phospholipid and β -lyso-phospholipid ($\text{C}-\alpha$)-glycerol in the 3.5-4.0 ppm region (confirming an increased glycolitic activity). The $[4-^{13}\text{C}]$ -glutamate signal was present only in control cells where the mitochondrial oxidative capacity was not compromised.

Conclusion: MRS of intact cells allows detection of multiple inter-linked biosynthetic and catabolic pathways involved in the retrograde communication between mitochondria and other cell compartments. In conclusion, the capability of T-Sedor to select $^1\text{H}-^{13}\text{C}$ bonds from different molecules offers novel tools to monitor ^{13}C fluxes from glycolysis to ML formation pathways in intact cells.

These results may open new perspectives to the development of non-invasive methods for *in vivo* monitoring the effects of mitochondrial impairment in a number of human diseases.