
Figure 1 - A: Baseline post-contrast T1w with tumor ROI for patient LP1. B: GK clustering of the 
p:q space for image in Fig A. The contours around centers indicate the degree of membership of a 
pixel being a certain tissue. C:  p:q clustering  based tissue segmentation for ROI shown in Fig A. 
Figure 2 - A: Post-gad T1w for patient GP1 at baseline followed by 16 weeks post therapy. B: 
Healthy WM tissue map generated from p:q clustering of images in Fig A. C: Edema & infiltrative 
tumor  tissue map generated from p:q clustering of images in Fig A. 
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BACKGROUND 
Objective determination of brain tumor extent is of significant interest in assessing therapy response, radiation treatment, and surgical resection planning. Planning 
effective treatments for highly heterogeneous and infiltrative high grade tumors requires non-invasive methods to evaluate their rapidly changing morphology. Though 
several MR contrast mechanisms are in use radiologically, it is still a challenge to manually delineate regions of necrosis, infiltrating tumor, edema, surrounding healthy 
gray matter (GM), and white matter (WM). We present a method to classify brain tumor imaging data into various tissue-compartments of interest using a two-
dimensional semi-automated adaptive clustering technique that we apply to MR Diffusion Tensor Imaging (MR-DTI) data. Two DTI-derived scalar parameters namely 
diffusion isotropy “p”, i.e. a scaled measure of Mean Diffusivity, and anisotropy “q”, a measure of the deviation of diffusion tensor from pure isotropy, are plotted on a 
2D feature space (1). Earlier work illustrates the utility of the p:q space in spatio-temporal visualization of the changing morphology of glioma and surrounding tissue 
for quantitative assessment of therapy response (2). A fuzzy clustering approach is presented to overcome the inherent heterogeneity in DTI datasets. Our method 
employs the Gustafson-Kessel (GK) clustering algorithm (3) to compute the fuzzy connectedness between a pair of pixel elements based on their spatial proximity and 
contrast similarity in the p:q feature space. The algorithm adapts the cluster shape to group similar tissue in a non-rigid manner. The iterative computation results in 
partitioning of the dataset, which is then used to create individual tissue maps. Follow up scans are similarly partitioned, allowing longitudinal interrogation of changing 
tumor and surrounding tissue constituents.  
MATERIALS AND METHODS 
A total of six patients were imaged for development of our clustering methodology. Three patients (LP1-3), undergoing therapy with G207, a genetically engineered 
oncolytic virus, and three patients (GP1-3) undergoing conventional chemo/radiation therapy, were evaluated. MR-DTI was performed on a 3T MRI scanner (Intera, 
Philips Medical Systems, Cleveland, OH) using a SENSE head coil. A diffusion single-shot EPI sequence was run with diffusion gradients applied in 15 directions 
(TR/TE = 3250/88ms, FOV 230 mm2, slice thickness/gap = 4/1mm, 24 slices to cover the tumor and representative surrounding regions, b-value = 1000s/mm2, matrix 
size = 2562). Pre-contrast FLAIR and post-contrast T1 weighted images were also acquired for anatomic reference and visual compartmentalization of the tumor 
pathology. The G207 patients were imaged prior to G207 inoculation (baseline), at 4, and 8 weeks, post-inoculation. The patients receiving chemo/radiation therapy 
were imaged at baseline, at 8, and 16 weeks during course of therapy. Diffusion tensor post-processing included eddy current correction, skull-stripping, and intra-
subject longitudinal registration performed using FSL (Analysis Group, FMRIB, Oxford, UK). Parametric isotropy (p) and anisotropy (q) data were computed using 
custom-written MATLAB (The MathWorks Inc, Natick, MA) code. The normalized p:q data for each slice of interest were plotted to yield a 2D feature space (1) and 
were compartmentalized using the Gustafson-Kessel (GK) algorithm with the aid of the Fuzzy Clustering and Data Analysis toolbox (4). The adaptive distance norm 
measure was employed in mapping the membership function. The resulting partitioned data were then classified into tissues constituents based on a priori knowledge of 
their diffusion characteristics (2). The following tissue maps were generated: healthy WM, healthy GM, tumor, vasogenic edema, and necrosis. The follow up scans 
were partitioned with respect to the cluster centers generated from the baseline scan, and the tissue fractions were calculated for chosen regions of interest (ROI). All 
studies were approved by the University of Alabama at Birmingham Institutional Review Board (Protocol # X080311002).  
RESULTS 
Fig 1A shows baseline post-contrast T1w image for a representative slice of 
patient LP1. Fig 1B shows the automated GK clustering of the p:q data for this 
slice. The tissue maps generated by our approach concur with WM fiber tract 
alteration patterns proposed in literature (5). Fig 1C shows on the results of DTI-
segmentation for the red ROI in Fig 1A. We also noted significant disruption in 
the integrity of WM fibers in follow up studies (red arrow) for patient GP1 
receiving chemo-radiation therapy. This is evidenced by reduced anisotropy (Fig 
2B), perhaps due to tumor infiltration and increased isotropy (Fig 2C). This WM 
abnormality could not be observed on post contrast T1 images (Fig 2A). We 
report WM disruption in 5 out of 6 patients and 2 out of 3 patients receiving 
G207 therapy had an increase in edema fraction, suggesting inflammatory 
response to therapy. Our segmentation approach permits longitudinal ROI 
analyses and assessment of changes arising from therapy response.  
CONCLUSION 
A simultaneous diffusion isotropy and anisotropy based analyses by means of 
fuzzy clustering provides valuable insight into the neuronal tissue 
microstructure. This is not feasible with fiber 
tractography, Fractional Anisotropy (FA), or Apparent 
Diffusion Coefficient (ADC) maps alone. The local 
differentiation of necrosis, edema, tumor, and healthy WM 
compartments was demonstrated in this study. Subtle 
changes in the integrity of WM fibers were detected, and 
these are not possible with other anatomic imaging 
techniques. The quantitative methodology reported here 
will find utility in glioma therapy assessment, a critical 
step for advancing novel treatments for brain cancer.  
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