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Abstract

Prostate cancer is multifocal and lesions are not distributed uniformly within the gland, and up to 40% of cancers are isoechoic. Magnetic resonance
imaging (MRI) is being increasingly used in the assessment of prostate cancer. The excellent soft tissue contrast and easily discernible zones within the
prostate provides high sensitivity to cancers. T,-weighted imaging using an endorectal coil combined with a pelvic phased-array coil has been shown to
provide high resolution images of the prostate, while coregistered MRSI has been shown to have improved specificity. A key challenge in using
preoperative MRI and other emerging functional modalities for prostate biopsy in combination with transrectal ultrasound (TRUS) is the registration of
these datasets. During an MRI exam the gland is pushed in the anterior direction against the pubic bone due to inflation of the rectal probe. Additional
shape changes due to patient motion, or drugs can induce further differences in glandular shape between preoperative MRI and ultrasound during biopsy.
In the proposed work, we model the deformation relating MRI and ultrasound nonlinearly so as to enable analysis of MRI in conjunction with ultrasound
(color blended or side-by-side) to enable the planning of biopsy targets visually using multimodality information. To the best of the author’s knowledge
this is the first time MRI and TRUS volumes of the prostate were registered using a nonlinear deformation model.
Introduction

T,-weighted imaging with endorectal coil provides high sensitivity to prostate cancers which are typically seen as locations with decreased signal
intensity relative to neighboring structures. Currently transrectal ultrasound imaging is the most prevalent modality used for detection of cancers during
biopsy. Reconstruction of a series of 2D ultrasound images to 3D is becoming popular. The combination of 3D images from MRI and ultrasound can help
significantly improve analysis of data (e.g. many cancers may be isoechoic in TRUS). The proposed work is motivated by the need to model accurately
nonlinear deformation between the two modalities, while at the same time fast in order to be clinically useful. Speed optimizations are achieved via the
use of a graphics processing unit (GPU). We present early results to show the clinical feasibility of such an approach needing further validation on real
subjects.
M ethod

After the 3D transrectal ultrasound is acquired, a discrete dynamic contour based semiautomatic segmentation' method provides a triangulated
surface description of the gland. A similar procedure is adopted for the T,-weighted MRI image also. Registration between the 3D MRI and TRUS
volumes were carried out in three steps: (1) Global surface alignment, (2) Deformable surface registration and (3) Elastically warping MRI to TRUS. In
the first step, the surface from MRI (Sygr;) was iteratively globally aligned to the TRUS surface (Stryus) using an extended weighted Procrustes analysis®.
Vertices that are not in alignment with corresponding vertices are weighted higher in estimating the global rotation and translation parameters. The result
of this alignment was a rigidly transformed surface (S’wry). After global alignment the tentative surface S’ygrr and Strus are nonlinearly registered using
an adaptive focus deformable model (AFDM)? to result in S”yg;. A correspondence is thus established between the vertices of the original MRI surface
and newly estimated surface S”yg;. Finally the MRI volume is elastically warped* using these boundary conditions to register with TRUS.
Results and Conclusions

An experiment on a two model 053 end-fire phantoms
(CIRS, Norfolk, Virginia) made from Zerdine with 6 and
12 glass beads embedded were used. A 3D TRUS scan was
acquired from a Philips HDI-3000 and a Terason t3000 for
the 6 and 12 bead phantoms respectively. Prior to the MRI
scan, an endorectal probe was inserted and inflated to 50 cc
and 70 cc respectively. The glass beads were manually

identified from both modalities. Registration is validated
using two multimodality phantoms with 6- and 12-glass
beads embedded that serve as fiducials. Registration
between MRI (with endorectal balloon volume of 70 cc)
and ultrasound volumes yielded average fiducial
registration error of 3.58 mm (¢ = 0.82 mm) and 3.16 mm
(o = 1.39 mm) respectively for 6 and 12 beads. Prior to
registration, these errors were 24.9392 mm (¢ = 1.14 mm)
and 10.76 mm (o = 2.88 mm) respectively. The algorithm
was completely parallelized using compute unified device
architecture (nVidia, Santa Clara, California) running on a
GTX 280 GPU. The time taken to run registration was
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Fig 1. (a) Sury overlaid
on MRI slice, (b) Strus
overlaid on the same
MRI slice showing
misalignment and (c)
MRI slice warped to
align with Strys after
registration.
Correspondence
between beads for 6
bead phantom (red for
MRI, green for TRUS,
and white for displaced
beads from MRI after
registration to TRUS)
before and after
registration are shown
in (d) and (e). SMRI is
red, and STRUS is

found to be approximately 13 seconds. Efforts are 6 Bead Phantom 12 Bead Phantom green. Arrows show
currently on to further speed up these algorithms without 3D TRUS Philips HDI-3000 Terason t3000 distance between
compromising registration accuracy. Fig. 1 shows a MRI Thin-section high-spatial resolution T, fast corresponding beads.
representative MRI slice warped to match the ultrasound spin-echo (70 cc endor ectal balloon) Shorter arrows in (&)
surface. Table 1 summarizes the protocol_s an(.1 Error p(o) 24.93 (1.14) 10.76 (2.89) show improved bead
registration error measures computed at fiducials. Before correspondence after
Registration errors are comparable to predicate (mm) registration.
techmql.les. Extensive validation on more phantqms and Error (o) 3.58 (0.82) 3.16 (1.39)

real patients need to be performed to further validate our After (mm)

reported errors.
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