
Fig 1. (a) SMRI overlaid 
on MRI slice, (b) STRUS 
overlaid on the same 
MRI slice showing 
misalignment and (c) 
MRI slice warped to 
align with STRUS after 
registration. 
Correspondence 
between beads for 6 
bead phantom (red for 
MRI, green for TRUS, 
and white for displaced 
beads from MRI after 
registration to TRUS) 
before and after 
registration are shown 
in (d) and (e). SMRI is 
red, and STRUS is 
green. Arrows show 
distance between 
corresponding beads. 
Shorter arrows in (e) 
show improved bead 
correspondence after 
registration. 
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Abstract 
Prostate cancer is multifocal and lesions are not distributed uniformly within the gland, and up to 40% of cancers are isoechoic. Magnetic resonance 

imaging (MRI) is being increasingly used in the assessment of prostate cancer. The excellent soft tissue contrast and easily discernible zones within the 
prostate provides high sensitivity to cancers. T2-weighted imaging using an endorectal coil combined with a pelvic phased-array coil has been shown to 
provide high resolution images of the prostate, while coregistered MRSI has been shown to have improved specificity. A key challenge in using 
preoperative MRI and other emerging functional modalities for prostate biopsy in combination with transrectal ultrasound (TRUS) is the registration of 
these datasets. During an MRI exam the gland is pushed in the anterior direction against the pubic bone due to inflation of the rectal probe. Additional 
shape changes due to patient motion, or drugs can induce further differences in glandular shape between preoperative MRI and ultrasound during biopsy. 
In the proposed work, we model the deformation relating MRI and ultrasound nonlinearly so as to enable analysis of MRI in conjunction with ultrasound 
(color blended or side-by-side) to enable the planning of biopsy targets visually using multimodality information. To the best of the author’s knowledge 
this is the first time MRI and TRUS volumes of the prostate were registered using a nonlinear deformation model.  
Introduction 

T2-weighted imaging with endorectal coil provides high sensitivity to prostate cancers which are typically seen as locations with decreased signal 
intensity relative to neighboring structures. Currently transrectal ultrasound imaging is the most prevalent modality used for detection of cancers during 
biopsy. Reconstruction of a series of 2D ultrasound images to 3D is becoming popular. The combination of 3D images from MRI and ultrasound can help 
significantly improve analysis of data (e.g. many cancers may be isoechoic in TRUS). The proposed work is motivated by the need to model accurately 
nonlinear deformation between the two modalities, while at the same time fast in order to be clinically useful. Speed optimizations are achieved via the 
use of a graphics processing unit (GPU). We present early results to show the clinical feasibility of such an approach needing further validation on real 
subjects. 
Method 

After the 3D transrectal ultrasound is acquired, a discrete dynamic contour based semiautomatic segmentation1 method provides a triangulated 
surface description of the gland. A similar procedure is adopted for the T2-weighted MRI image also. Registration between the 3D MRI and TRUS 
volumes were carried out in three steps: (1) Global surface alignment, (2) Deformable surface registration and (3) Elastically warping MRI to TRUS. In 
the first step, the surface from MRI (SMRI) was iteratively globally aligned to the TRUS surface (STRUS) using an extended weighted Procrustes analysis2. 
Vertices that are not in alignment with corresponding vertices are weighted higher in estimating the global rotation and translation parameters. The result 
of this alignment was a rigidly transformed surface (S’MRI). After global alignment the tentative surface S’MRI and STRUS are nonlinearly registered using 
an adaptive focus deformable model (AFDM)3 to result in S”MRI. A correspondence is thus established between the vertices of the original MRI surface 
and newly estimated surface S”MRI. Finally the MRI volume is elastically warped4 using these boundary conditions to register with TRUS. 
Results and Conclusions 
An experiment on a two model 053 end-fire phantoms 
(CIRS, Norfolk, Virginia) made from Zerdine with 6 and 
12 glass beads embedded were used. A 3D TRUS scan was 
acquired from a Philips HDI-3000 and a Terason t3000 for 
the 6 and 12 bead phantoms respectively. Prior to the MRI 
scan, an endorectal probe was inserted and inflated to 50 cc 
and 70 cc respectively. The glass beads were manually 

identified from both modalities. Registration is validated 
using two multimodality phantoms with 6- and 12-glass 
beads embedded that serve as fiducials. Registration 
between MRI (with endorectal balloon volume of 70 cc) 
and ultrasound volumes yielded average fiducial 
registration error of 3.58 mm (σ = 0.82 mm) and 3.16 mm 
(σ = 1.39 mm) respectively for 6 and 12 beads. Prior to 
registration, these errors were 24.9392 mm (σ = 1.14 mm) 
and 10.76 mm (σ = 2.88 mm) respectively. The algorithm 
was completely parallelized using compute unified device 
architecture (nVidia, Santa Clara, California) running on a 
GTX 280 GPU. The time taken to run registration was 
found to be approximately 13 seconds. Efforts are 
currently on to further speed up these algorithms without 
compromising registration accuracy. Fig. 1 shows a 
representative MRI slice warped to match the ultrasound 
surface. Table 1 summarizes the protocols and 
registration error measures computed at fiducials. 
Registration errors are comparable to predicate 
techniques. Extensive validation on more phantoms and 
real patients need to be performed to further validate our 
reported errors.           
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 6 Bead Phantom 12 Bead Phantom 
3D TRUS Philips HDI-3000 Terason t3000 

MRI Thin-section high-spatial resolution T2 fast 
spin-echo (70 cc endorectal balloon) 

Error µ(σ) 
Before 
(mm) 

24.93 (1.14) 10.76 (2.88) 

Error µ(σ) 
After (mm) 

3.58 (0.82) 3.16 (1.39) 
 

         Table 1. Results from 6 and 12 bead 
ms. 
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