

Multinuclear and Multiparametric MR imaging as an early treatment response biomarker for preoperative systemic therapy in breast cancer: Preliminary Results

M. A. Jacobs^{1,2}, R. Ouwekerk¹, A. C. Wolff², V. Stearns², K. Macura¹, I. Kamel¹, Z. M. Bhujwalla^{1,2}, and D. Bluemke¹

¹The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, ²Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

INTRODUCTION: Our purpose was to *prospectively* investigate the feasibility of developing radiological biomarkers using dynamic contrast enhanced magnetic resonance imaging(DCE-MRI), spectroscopy (MRS), and sodium imaging (²³NA) before (baseline) and after preoperative systemic treatment (PST) for monitoring treatment response of locally advanced breast cancer(LABC). Multiparametric and multinuclear MRI makes it possible to non-invasively image radiological biomarker information of breast lesions as potential early predictive markers of response [1].

METHODS: Patients with LABC undergoing PST with an anthracycline-based regimen were studied before and after treatment. MR data were acquired consisting of fat-suppressed(FS) T₂ spin echo(TR/TE=5700/102) and T₁-FSPGR (TR/TE=200/4ms) images. DCE-MR contrast agent(Gd-DTPA;0.1mmol/kg) was administered, and 3D FS-T₁-FSPGR (TR/TE=20/4) pre-and post-contrast images were obtained. Water-suppression was accomplished with “CHESS” pulses, and lipid suppression using a STIR pulse(TI=171ms) and MRS was obtained using PRESS(TR/TE=2000/280ms)[2]. ²³Na images were obtained with TIP (TE/TR=0.4/120ms)[3]. Total data acquisition time was about 45 min. After PST, patients had a mastectomy or lumpectomy with pathological assessment of tumor response. Volumes were obtained with a semi-automated segmentation algorithm. Signal to noise ratios (SNR) were obtained from the choline peak(3.2ppm). Quantitative estimates (mMol/l=mM) of total sodium content(TSC) were made by external reference technique. Descriptive statistics are presented as mean and standard deviations.

RESULTS: We studied eighteen patients receiving PST. There were 15 responders; 4 (22%) complete pathological responders (cPR) and 11 (61%) partial pathological responders (pPR)-figure 1, and 3(17%) non responders(nPR). Lesion volume decreased in all groups with the largest decrease in the responders (86 to 53mm³) and nPR (94 to 75 mm³) after the first cycle. Responders

had the largest reduction in the choline SNR (7.5 ± 2.5 to 4.5 ± 1 p<0.05) compared to nPR (8.9 ± 2.2 to 6.9 ± 2.1). Sodium concentration significantly decreased in responders (62.8 ± 18 to

$$48.8 \pm 8 \text{ mM}; p<0.05$$

, however, there was an increase (57.7 ± 7.6 to 56.5 ± 1.5) in the TSC for the non-responders(graph). **DISCUSSION:** Sodium concentration and choline SNR were significantly changed after PST in responders. These finding confirm previous reports in a similar set of patients and extend these results to include multinuclear studies [4-6]. Combining these MR methods will enable us to potentially devise new radiological biomarkers (Choline and TSC) that will improve our understanding of the factors

Fig. 2 Graphs of the changes in volume, choline, and Total Sodium Concentration

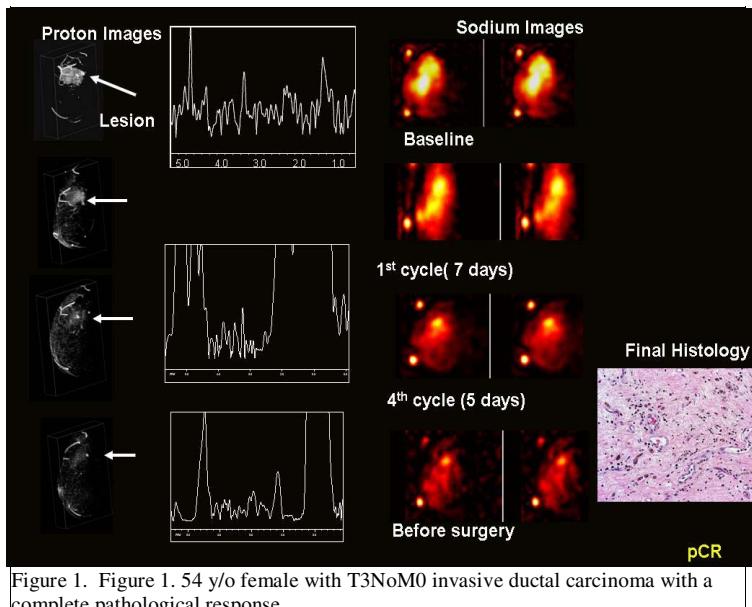
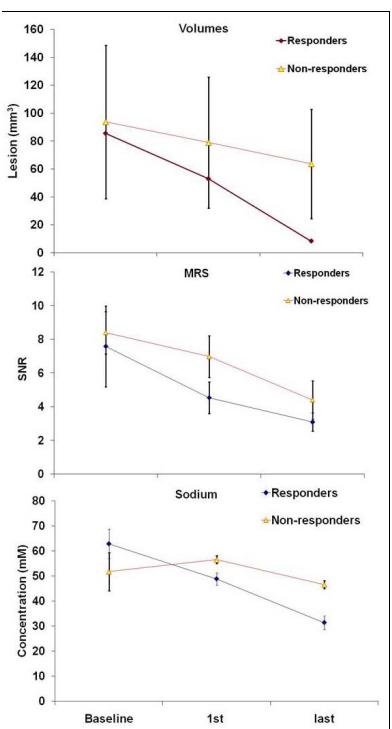



Figure 1. Figure 1. 54 y/o female with T3N0M0 invasive ductal carcinoma with a complete pathological response.

REFERENCES: [1] Wolff AC. *J Clin Oncol*. 2008;26(5):806-813 [2] Jacobs MA, *JMRI*. 2004;19(1):66-75 [3] Ouwekerk R, BCR T. 2007. [4]

Meisamy S, *Radiology*. 2005;236:465-75 [5] Partrige SC, *AJR* 2005 Jun;184(6):1774-81 [6] Manton, DJ, *Br J Cancer*. 2006;94(3):427-435

ACKNOWLEDGMENT: NIH grants: 1R01CA100184; P50 CA103175; 5P30CA006973(IRAT)

