

THE EFFECT OF B₁ INHOMOGENEITY ON ENHANCEMENT RATIO MEASUREMENTS USING DCE-MRI OF THE BREAST AT 3T.

C. A. Azlan^{1,2}, T. S. Ahearn¹, G. D. Waiter¹, S. I. Semple³, F. J. Gilbert¹, and T. W. Redpath¹

¹Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom, ²Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia, ³Department of Medical Physics, University of Edinburgh, Edinburgh, Scotland, United Kingdom

Introduction

Dynamic contrast-enhanced (DCE)-MRI has been proven to be very useful in the diagnosis and prognosis of breast cancer. In the recent years, 3T MR scanners have become more common in routine diagnostic imaging. The main advantage of high field imaging is the improved signal to noise ratio. However, the major drawback is that there is an increased inhomogeneity in radiofrequency transmit (B₁) field across the field of view particularly in breast scanning due to the asymmetric position of the patient in the scanner.

Clinically, the analysis of breast DCE-MRI is done using a semi-quantitative method. This is performed by measuring the signal enhancement ratio (ER) in a chosen region of interest after contrast agent infusion. The ER is calculated using:

$$ER = \frac{S_{post} - S_{pre}}{S_{pre}} \times 100\% \quad \text{Eq. 1}$$

where S_{pre} and S_{post} are the signal intensities measured on the images obtained before and after the arrival of contrast agent in the tissue [1]. Since signal intensity is a function of flip angle (α) and hence B₁ transmit field, it will be affected by the B₁ inhomogeneity. The aim of our study is to investigate the error in ER which arises from this variation in B₁. We chose to perform a phantom study instead of a numerical approach because we found that at a very short TR the signal intensities have a poor agreement with the FLASH equation, probably as a result of incomplete RF spoiling of transverse magnetisation.

Methods

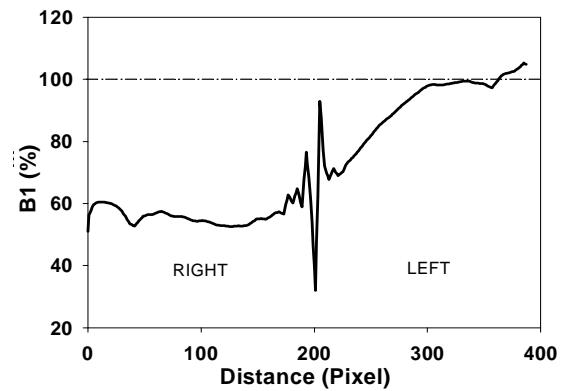
Using a Philips Achieva 3T scanner and a seven channel breast coil (Philips Medical Systems, Best, the Netherlands) the B₁ field was measured by imaging five healthy volunteers in the axial plane. A B₁ map was produced using proprietary B₁ mapping (based on the “actual flip-angle imaging” [2] pulse sequence). To simulate pre- and post-contrast breast tissue, a set of gel phantoms with different T₁ values was constructed (T₁=380, 580, 890, 1010 and 1330ms).

To accurately simulate the effect of B₁ inhomogeneity on images of the gel phantoms a uniform B₁ field amplitude across the field of view was required. Hence, imaging was performed using a quadrature head coil and a 3D T1-FFE sequence (TR/TE/α:10ms/2.3ms/35°). The flip angle of 35° was chosen as it produces a good linear response and sufficient signal to noise ratio over the range of T₁s found in breast tissues. To simulate the B₁ inhomogeneity effect α was changed to 16° and 54° which represents 46% and 154% of B₁ field relative to the desired B₁. These values were chosen to cover a wide range of B₁ inhomogeneity to compare to our measurement of B₁ inhomogeneity. Assuming that the T₁ of ductal tissue is approximately 1330ms [3] the enhancement ratio was calculated for each phantom at each α using Eq. 1. Here T_{1pre} is taken to be the phantom with T₁=1330ms and T_{1post} is each of the shorter T₁ phantoms.

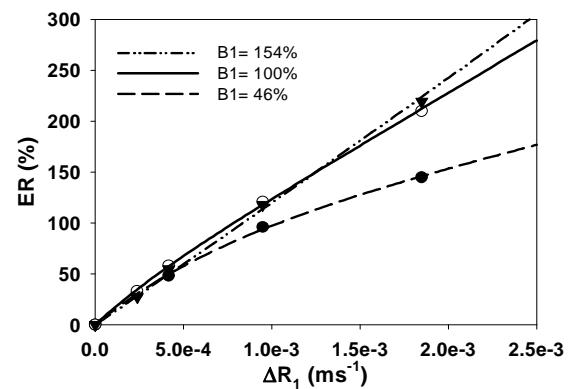
Results

A typical plot of the B₁ field variation across the axial plane is shown in Fig. 1. B₁ field can be seen to vary from around 50% to 110% of the desired B₁ across the field of view. The ER as a function of difference in relaxation rate (ΔR₁) for three simulated B₁ fields is shown in Fig. 2 (where ΔR₁ is considered to be proportional to contrast agent concentration during DCE-MRI). The figure shows that the amplitude of ER decreases as the B₁ field reduces and increases slightly with B₁ field stronger than the optimal field.

Discussion


Breast DCE-MRI at 3T suffers from B₁ inhomogeneity problems. For high field axial scanning, the B₁ field is reduced at one side relative to the other. This causes variation in the enhancement ratio. From Fig. 2, it can be observed that for 100% contrast enhancement, a value often taken as the minimum ER indicating possible malignancy [4], a 54% reduction in B₁ will cause a reduction of ER by 20% from the “true” value. Fig. 2 shows that the differences are greater at higher ER values. However, increases in the RF pulse angle in areas of increased B₁ transmit field do not greatly alter enhancement ratio at the RF pulse angle we have chosen. Therefore, the use of a flip angle larger than 35° might be useful to reduce this effect at the expense of a reduced contrast to noise ratio and increased SAR. We conclude that clinicians should be aware and consider this issue during the analysis of DCE-MRI images of the breast at 3T.

References


- [1] Kuhl CK *et al.* J Magn Reson Imaging 2000; 12: 965-974.
- [2] Yarnikh VL. Magn Reson Med 2007; 57:192-200.
- [3] Rakow-Penner R *et al.* J Magn Reson Imaging 2006; 23:87-91
- [4] Kaiser WA *et al.* Radiology 1989; 170:681-686.

Acknowledgement

The authors would like to thank Philips Medical Systems for their support on this work.

Fig. 1 A profile plot showing a typical B₁ inhomogeneity for an axial scan of the breast performed on a volunteer at 3T.

Fig. 2 Enhancement ratio as a function of ΔR₁ for three B₁ values, where ΔR₁ is the differences in relaxation rate (1/T₁) before and after the arrival of contrast agent in the tissue.