

Maximizing RF Signal in the Presence of Rapid T2 Relaxation

M. Carl¹, M. Bydder², A. Takahashi¹, E. Han¹, and G. Bydder²

¹GE Healthcare, Applied Science Lab, Milwaukee, WI, United States, ²Radiology, University of California, San Diego, CA, United States

Introduction: Traditional MR imaging is predominantly geared towards long T_2 species, for which the RF duration τ can be considered negligible compared to the intrinsic T_2 . When using UTE methods to image short or ultra short T_2 species, such as ligaments, tendons or cortical bone, the intrinsic T_2 can be on the same order as τ , and the signal decay during the RF pulse may no longer be ignored [1,2]. In this work we show how to select a nominal flip angle (for a given maximum B_1) that maximizes signal amplitude for these circumstances. In addition, we derive an analytic expression for an effective TE for short T_2 species.

Single RF Pulse: The two parameters under the control of the pulse programmer that determine the flip angle are the magnetic RF field strength B_1 and pulse duration τ , which for a hard RF pulse leads to $\theta = \gamma B_1 \tau$ for the nominal flip angle. Solving the Bloch equations for the transverse and longitudinal magnetization from a single hard RF pulse along the x-axis of magnetic field strength B_1 ($\omega_1 = \gamma B_1$) in the presence of T_2 relaxation leads to [2]:

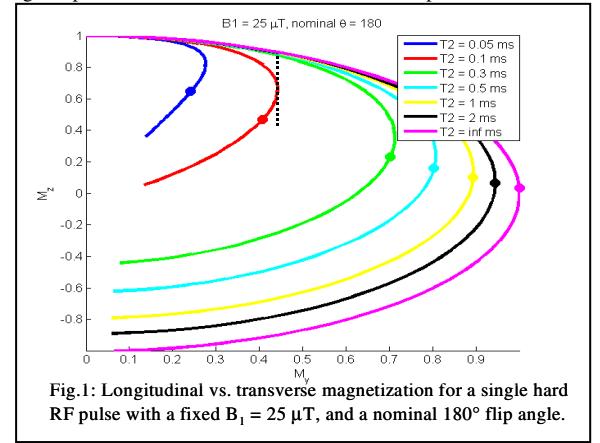
$$M_y(\tau) = M_0 \frac{\omega_1}{\sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \exp\left(-\frac{\tau}{2T_2}\right) \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) \quad \text{and} \quad M_z(\tau) = M_0 \exp\left(-\frac{\tau}{2T_2}\right) \left[\cos\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) + \frac{1}{2T_2 \sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) \right] \quad (1)$$

A plot of $M_z(\tau)$ vs. $M_y(\tau)$ for the case of constant $B_1 = 25\mu\text{T}$ and $\theta = 180^\circ$ is shown in Fig.1. Note the evolution of the magnetization corresponds to an inversion only for the limiting case of $T_2 \rightarrow \infty$. As noted in [1], the maximum of the signal M_y generally does not occur at $\theta = 90^\circ$ (marked on the curves as solid dots), but at a smaller flip angle (e.g. dashed line). Setting the derivative of M_y with respect to τ to zero yields an expression for the nominal flip angle that maximizes signal, given in Eq.2. Fig.2 shows Eq.2 as a function of T_2 for different values of B_1 . As expected, the value approaches 90° for long T_2 species but is less than 90° for shorter T_2 species.

Optimum flip angle for single RF pulse: $\theta = \gamma B_1 \left[\frac{\arctan\left(2T_2 \sqrt{\omega_1^2 - \frac{1}{4T_2^2}}\right)}{\sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \right] \quad (2)$

Effective Echo Time (TE): Ordinarily, the echo time TE is defined as the time from the center of the RF pulse to the time of the echo formation of the MR signal [3]. If we denote the time from the end of the RF pulse to the time of echo formation as the wait time T_w , then $TE = T_w + \tau/2$. Robson et al. studied the effects of signal decay when T_2 is on the order of τ [4]. They concluded that the echo time is generally a function of T_2 , i.e. $TE(T_2)$, with asymptotic behaviors: $TE(\infty) = T_w + \tau/2$ and $TE(0) = T_w$. The notion of an effective $TE(T_2)$ may be solidified by casting M_y of Eq.1 into the form of a traditional exponential T_2 decay, which leads to Eq.3. This translates T_2 decay occurring during the RF pulse into the more familiar concept of echo time. A plot of the effective TE as a function of T_2 for different values of θ is shown in Fig.3.

Effective echo time: $TE(T_2) = T_w + \frac{\tau}{2} - T_2 \ln \left[\frac{\text{sinc}\left(\sqrt{\theta^2 - \frac{\tau^2}{4T_2^2}}\right)}{\text{sinc}(\theta)} \right] \quad (3)$



Spoiled RF Pulse Train: The previous analysis considered the case of a single RF pulse with fully relaxed spins ($M_z = M_0$), which is equivalent to $TR \gg T_1$. In practice, the longitudinal magnetization is not usually allowed to re-grow to its equilibrium value M_0 , so we must also consider the case of spoiled RF pulse train acquisition. Combining the two equations of Eq.1, an expression for the steady-state magnetization M_{ss} , is readily obtained:

Steady State Magnetization: $M_{ss} = M_0 \left[\frac{\omega_1 \left(1 - \exp\left(-\frac{TR}{T_1}\right) \right) \exp\left(-\frac{\tau}{2T_2}\right) \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right)}{\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \left\{ 1 - \exp\left(-\frac{TR}{T_1}\right) \exp\left(-\frac{\tau}{2T_2}\right) \left[\cos\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) + \frac{1}{2T_2 \sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) \right] \right\}} \right] \quad (4)$

Taking the derivative of Eq.4 with respect to τ and equating to zero yields the optimal nominal flip angle ($\theta = \gamma B_1 \tau$) for a given B_1 :

Generalized Ernst Angle for SPGR: $\cos\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) - \frac{1}{2T_2 \sqrt{\omega_1^2 - \frac{1}{4T_2^2}}} \sin\left(\sqrt{\omega_1^2 - \frac{1}{4T_2^2}} \tau\right) = \exp\left(-\frac{TR}{T_1}\right) \exp\left(-\frac{\tau}{2T_2}\right) \quad (5)$

Note that Eq.5 reduces to the classical Ernst angle in the limit $T_2 \rightarrow \infty$. Fig.4 shows the optimum flip angle vs. T_2 for several values of TR/T_1 and fixed $B_1 = 25 \mu\text{T}$.

Conclusion: We have investigated the use of single hard RF pulses and pulse trains for imaging short T_2 species. We have derived an analytical expression for the effective TE that is consistent with the earlier work, and an expression that determines the optimum nominal flip angle for maximizing signal from different T_2 species.

References: [1] Tyler et al, JMRI 25:279 (2007) [2] Sussman et al, MRM 40:890 (1998) [3] ACR Glossary of MR Terms (1995) [4] Robson et al, ISMRM 11 (2004)

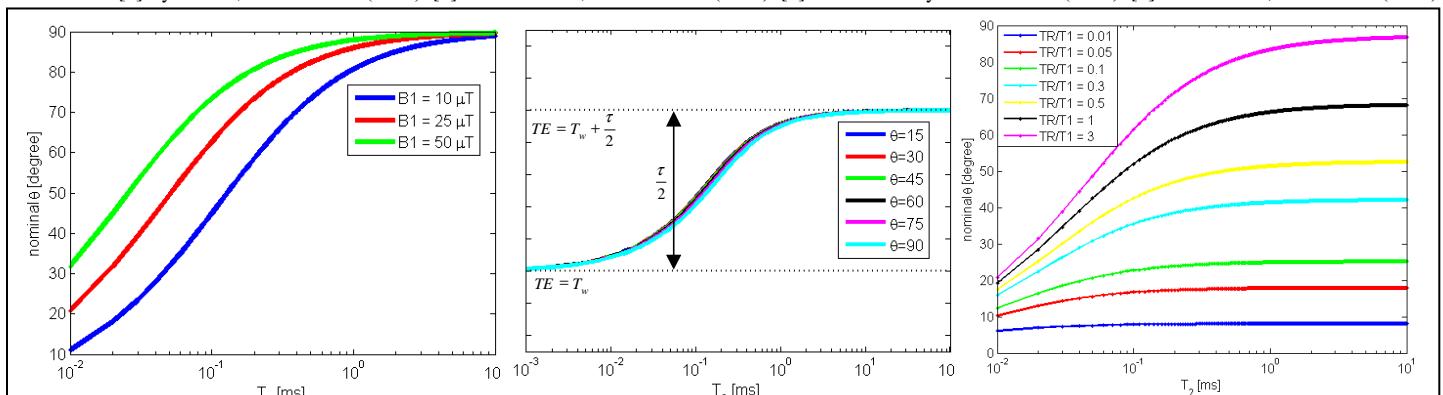


Fig.2: Optimum nominal flip of a single hard RF pulse as a function of T_2 .

Fig.3: TE vs. T_2 for different flip angles using a $\tau = 1\text{ ms}$ RF hard pulse.

Fig.4: Optimum nominal flip angle of a hard RF pulse train as a function of T_2 .