

Correlation Between T1 ρ MRI and Arthroscopy in Adults with Chondromalacia

W. R. Witschey¹, A. Borthakur², M. Fenty², J. B. Kneeland³, J. Lonner⁴, E. L. McArdle², and R. Reddy²

¹Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, United States, ²Radiology, University of Pennsylvania, Philadelphia, PA, United States, ³Radiology, Pennsylvania Hospital, Philadelphia, PA, United States, ⁴Booth Bartolozzi Balderston Orthopaedics, Pennsylvania Hospital, Philadelphia, PA, United States

Introduction: The need to detect the earliest changes in cartilage degeneration in order to both use and validate disease modifying osteoarthritic drugs, as well as with the rather poor accuracy of conventional MR sequences for the detection of these changes, has stimulated considerable interest in the development of techniques that can directly probe the macromolecular structure. In addition to direct sodium MRI and dGEMRIC, T1 ρ was used previously to explore proteoglycan loss in patients with confirmed cartilage loss, but without exogenous contrast agent. A study of two patients with arthroscopically confirmed posttraumatic cartilage injury found increased T1 ρ compared to the healthy compartments in both patients (1). T1 ρ was increased ($p < 0.002$) in six subjects with OA scored using a WOMAC (2) and KL scores (3). We hypothesize that chondromalacia observed during arthroscopy should correlate with lesions detected by T1 ρ MRI. To test this hypothesis, in a blinded, retrospective study, we investigated whether T1 ρ MRI can reliably detect chondromalacia at arthroscopy.

Materials and Methods: Recruitment and Arthroscopy. 9 asymptomatic subjects (2 men and 7 women) and 6 patients (3 men and 3 women) in whom one or more regions of chondromalacia, defined as grade I or II cartilage damage, had been demonstrated at arthroscopy were recruited for this study. Cartilage grading was performed according to the classification of Outerbridge modified to include the femorotibial joint and was as follows: Grade I: Softening and swelling of the cartilage; Grade II: Early superficial fibrillation, which does not reach the subchondral bone, and is less than 0.5 inch in diameter; Grade III: Fissuring that reaches the subchondral bone, which is not exposed, and greater than 0.5 inch in diameter; Grade IV: Exposed subchondral bone of any diameter. **MRI.** MRI was performed 2-3 months post-arthroscopy using T1-weighted and T1 ρ MRI from which spatial T1 ρ relaxation maps were calculated. **Image Processing.** T1-weighted images were interpolated to 0.5 mm³ and resliced along coronal and axial aspects and interpolated again along each aspect to 0.5 mm x 0.54 mm² to match the resolution of T1 ρ -weighted images. Patient motion during image acquisition was found to be problematic for T1 ρ quantification, especially in axial views where non rigid body rotation of the leg was observed. An initial manual alignment of the axial T1 ρ -weighted images to the resliced axial T1-weighted image was performed by in-plane rotation and translation after which a region of interest containing cartilage and bone was selected. Masked, axial T1 ρ -weighted images were exported to 3DVIEWNIX (MIPG, University of Pennsylvania, Philadelphia, Pennsylvania) where T1 ρ -weighted images were registered to T1-weighted images. The cartilage was semi-automatically segmented from the T1-weighted images using a LiveWire algorithm (21) and masks were applied to all T1 ρ -weighted images. Masked, coregistered T1 ρ -weighted images were fit pixelwise to the linearized, monoexponential signal decay equation $\ln(S) = -TSL/T1\rho + \ln(S_0)$. T1 ρ relaxation maps were viewed by two of the authors, who characterized lesions as either diffuse or focal in patients only. While diffuse lesions were quantified by the average compartment T1 ρ (Table 1), focal lesions were quantified by mean T1 ρ in an ROI drawn at the site of the lesion and possibly extending across multiple slices. **Data Analysis.** The difference between subjects and patients was performed using multivariate ANOVA and bootstrap confidence interval tests. Correlation between arthroscopy and T1 ρ MRI was determined by calculating mean compartment T1 ρ or calculating T1 ρ mean of a large focally elevated region in a compartment.

Results: Median T1 ρ relaxation times among symptomatic and asymptomatic subjects were significantly different ($p < 0.001$) and symptomatic T1 ρ exceeded asymptomatic articular cartilage median T1 ρ by 2.5 to 9.2 ms. Patellar T1 ρ was 2.5-8.3 ms higher than the tibial compartment ($p < 0.01$). In 8 observations of mild (grade 1 and 2) osteoarthritis at arthroscopy, mean compartment T1 ρ was elevated in 5, but in all cases, large foci of increased T1 ρ were observed. In 6 cases of moderate or severe chondromalacia, compartment mean T1 ρ was elevated.

Discussion: Correlation between mean T1 ρ for the entire compartment and arthroscopy was excellent in all cases where the patient had grade 3 or 4 chondromalacia at arthroscopy, however, in cases of mild chondromalacia, the correlation was much weaker when averaging over a compartment. It must be understood, however, that those facets labeled as diffuse grade I changes, demonstrated considerable heterogeneity at arthroscopy with normal and abnormal cartilage intermixed and that the grade is assigned on the basis of the highest grade of abnormality present, not on the basis of some type of average. Thus, a compartment average would underestimate the arthroscopic grade and the use of at least reasonably large foci of elevated T1 ρ to compare to the arthroscopic grade is justified in that it better corresponds to how the arthroscopic grade is assigned. One potentially confounding variable is the presence of clinically occult osteoarthritic changes in

asymptomatic subjects. This would artificially elevate the mean T1 ρ in the asymptomatic subjects, making it more difficult to discriminate between normal and abnormal values.

Conclusion: In conclusion, these results demonstrate that T1 ρ relaxation mapping correlates with chondral lesions identified by arthroscopy. High correlation between T1 ρ MRI and chondral damage was observed for grades 3 and 4 chondromalacia but correlation was only modest in the case of grade 1 or 2 damage when averaging across compartments.

References: (1) Lozano, et al. J. Bone. Joint Surg. (2006). (2) Regatte, et al. Acad. Radiol. (2004). (3) Li, et al. Osteoarthritis Cartilage (2007).

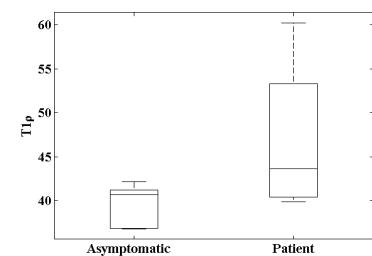


Figure 1: Boxplots of T1 ρ among asymptomatic subjects and patients. Median T1 ρ was significantly different by a nonparametric Wilcoxon rank sum test ($p < 0.001$).

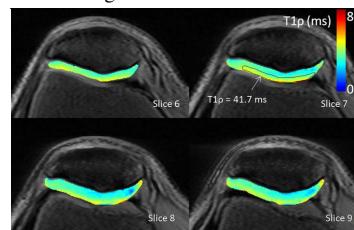


Figure 3: T1 ρ relaxation maps from a 30 year old male with no previous history of knee injury and no knee pain. Patellar cartilage is homogenously, smoothly varying and has a characteristic increase in relaxation time from the deep cartilage adjacent to the subchondral bone to the superficial cartilage adjacent to the synovium.

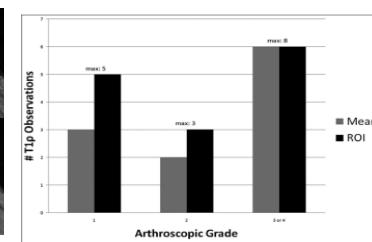
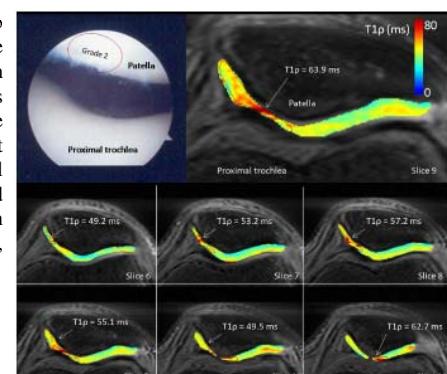



Figure 2: Correlation of arthroscopic grade with T1 ρ MRI. 14 arthroscopic observations of chondromalacia were made among 6 patients. Mean compartment T1 ρ was abnormal in all cases of grade 3 and 4 chondromalacia, but mixed for grades 1 and 2. ROI analysis of the individual patients resolves the inconsistency among grades 1 and 2, for which heterogeneous and focally increased T1 ρ was observed and mischaracterized by the compartment average.

