
Fig. 1. Steps in a whole-bone micro-FE analysis. (a) Original grayscale 
acquisition; (b) normalized and inverted BVF map; (c) simulated compression 
test; (d) resulting strain map (axial and longitudinal views). 

Fig. 2. Young’s modulus for 
compressive loading along the bone’s 
main loading direction computed from 
downsampled data versus that 
computed at high-resolution for both 
grayscale and binarized images. 

Fig. 3. Minimum, maximum, and 
mean convergence parameter as a 
function of iteration number for 28 
in-vivo image datasets from the 
distal tibial metaphysis. 
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Introduction: In addition to bone volume fraction, trabecular network architecture is known to significantly impact overall bone strength [1]. Whereas 
μMRI-derived structural trabecular bone (TB) parameters have been shown to predict fracture risk, finite element (FE) analysis on the basis of MR image 
input is arguably a more direct measure of mechanical bone strength. As with all measurements of TB strength on the basis of non-invasively acquired 
images, the main challenge is posed by the relatively large voxel dimensions (150 µm or larger) [2,3]. Since thickness of individual trabeculae is on the 
order of 100 µm, most image voxels are only partially occupied by bone, thus binarization of the data can entail significant errors. A second challenge 
associated with image-based FE modeling is the long computation time required. 

To address these issues, we have developed a custom FE solver that takes as input a 3D grayscale bone-volume fraction maps (derived from a 
3D sub-region of a MR image). The program outputs the mechanical parameters in the form of six elastic coefficients (three Young’s and three shear 
moduli). The algorithm largely follows the methods proposed by van Rietbergen et al [4]. Among the advantages of our custom algorithm is the relatively 
short computation time, which is achieved by estimating an initial solution and choosing the criteria for convergence specific to our particular application. 

The software has been used in recent ex-vivo studies to demonstrate the role of structural parameters (over and beyond bone-volume fraction) as 
a predictor of bone strength [5] and to investigate the relative contributions of trabecular and cortical to overall bone strength [6]. The purpose of the 
present study is to investigate alternate criteria for convergence of the algorithm, and to demonstrate the importance retraining grayscale information at 
in-vivo resolution. 
  
Methods: The finite element solver was implemented in pure C++ on a Linux workstation with dual quad core Xeon CPUs (3.16 GHz) and 28 GB of 
RAM. For efficiency, four to six simulations ran simultaneously on separate CPUs of the same machine. The algorithm largely follows the implementation 
in [4], with each voxel being modeled as a single hexahedral (brick) element. The displacement function is assumed to be continuous and tri-linear on 
each element, thus giving three free displacement parameters for each (non-boundary) vertex (∆xi, ∆yi, ∆zi,), and three boundary conditions for each 
vertex on the boundary of the volume. By minimizing the total elastic strain energy over the entire structure, a linear system is obtained (relating the 
displacement at each vertex with the displacements at neighboring vertices), with 3N equations and 3N unknowns, where N is the number of non-

boundary vertices. The linear system depends on Young’s modulus Ei and Poisson’s ratio ν i  at each voxel, with the right-hand side depending on the 
applied boundary conditions, which are set to simulate 
various forms of loading. This (sparse) linear system was 
solved for each simulation using a preconditioned 
conjugate-gradient algorithm.  

The algorithm was applied to images in a number of 
studies, including in-vivo μMRI, ex-vivo μMRI, and ex-vivo 
μCT. Fig. 1 shows the processing steps for one of 30 
distal tibia specimens from 15 donors (ages 55-85 years) 
obtained with a 3D spin-echo sequence [7] after marrow 
substitution with gadolinium-doped water at 1.5T field 
strength (128 slices at 160x160x160 µm3). The data were 
first normalized and inverted so that intensities 

represented the fractional voxel occupancy by bone (BVF). 
These were then used as input to the mechanical modeling 
software, with Young’s modulus for each voxel proportional 
to BVF, with 100% = 15 GPa. 

These specimens were also scanned using μCT at 25 
μm isotropic (µCT 80, Scanco Medical, Switzerland). To 
demonstrate the importance of retaining the grayscale 
information, μCT data were processed at two downsampled 
resolutions: 50 μm isotropic and 175 μm isotropic. At the 
lower resolution, two versions were analyzed, grayscale and 
binarized using simple thresholding. 
  
Results and Conclusions: For the whole-bone analyses 
(around 2 million elements per simulation), each 
simulation completed in around one hour (effectively 15 
minutes/simulation as four processes ran simultaneously). 
Fig. 2 compares computed moduli obtained at in vivo and 
μCT resolution. While both grayscale and binary datasets 
correlate well with high-resolution, the grayscale images 
match better in terms of slope being closer to unity (1.10 
vs. 1.45), suggesting that retaining grayscale information is indeed important at the lower resolution. 

The rate of convergence is shown in Fig. 3 for the in-vivo MR datasets. Here the ‘convergence parameter’ represents the percent deviation from 
the ending surface forces throughout the conjugate-gradient iterations. We have observed that this parameter tends to converge faster than the (more 
classically used) residual in the conjugate-gradient algorithm, and is more directly related to the physical parameter being computed. For example, a 
convergence parameter of 1% roughly corresponds to a 1% error in the computed Young’s modulus. The results suggest the method to be practical for 
mechanical assessment of trabecular bone mechanical competence on the basis of in-vivo high-resolution MR images as input into a FE model. 
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