Fat Suppression for Non-contrast-enhanced Peripheral Angiography: Phase-sensitive versus IDEAL SSFP

T. Çukur¹, A. Shimakawa², H. Yu², B. A. Hargreaves¹, B. S. Hu³, J. H. Brittain², and D. G. Nishimura¹

¹Stanford University, Stanford, California, United States, ²Applied Science Laboratory, GE Healthcare, United States, ³Palo Alto Medical Foundation, United States

Introduction: MR angiography is a valuable tool in the diagnosis of vascular diseases. Non-contrast-enhanced flow-independent peripheral angiograms can be produced with magnetization-prepared balanced SSFP if the bright fat signal is suppressed [1]. However, poor fat suppression and banding artifacts can be observed with field inhomogeneity (e.g., over large FOVs). In this work, we compare two reliable fat/water separation methods: phase-sensitive (PS) [2] and multi-echo IDEAL [3,4] SSFP, both compatible with dual-acquisition complex-sum SSFP [5] that effectively reduces the banding artifacts.

<u>Methods:</u> For both techniques, an initial inversion recovery (IR) to reduce the synovial fluid signal is followed by a segmented BIR-4 T2-

prep pulse [6] to reduce the muscle signal. After suppressing the transient oscillations by gradually increasing the tip angle [7], the generated contrast is effectively captured with centric phase-encode ordering and segmented k-space acquisitions. Magnetization is prepared again at the beginning of each segment to restore the contrast [1].

Fig. 1 shows the diagrams for PS-SSFP (TR = TR1) and IDEAL (TR = TR2 > TR1). To achieve a fair comparison between the techniques, we equated the total scan times and the acquisition times for each k-space segment by using different parallel imaging (ARC [8]) accelerations. Three volunteers were scanned to produce lower leg and foot angiograms on a 1.5 T GE scanner with the following parameters: 1 mm³ isotropic resolution, $\alpha = 90^{\circ}$, FOV = 32 cm (lower leg) and 27 cm (foot), ± 125 kHz BW, 1.8 s IR,

 $80\,$ ms T2-prep, and a 3 s inter-segment recovery time. The magnetization was prepared every 6 s for the lower leg and 3.3 s for the feet. While TR1 = 5 ms and TR2 = 10 ms, the 2D acceleration factors were 1.4 for PS-SSFP and 2.8 for IDEAL.

Results: Figs. 2 and 3 show the images of the lower leg and feet acquired with PS-SSFP and IDEAL. Table 1 lists the mean SNR and contrast measurements. PS-SSFP has higher blood-muscle contrast, which may be attributed to the increased MT effect with its shorter TR [9]. However, partial volume artifacts in PS-SSFP cause small vessel loss, whereas IDEAL enhances the small vessel depiction. IDEAL also achieves better venous suppression due to its longer TR [10].

<u>Conclusion:</u> Both methods are effective at suppressing fat. However, while PS-SSFP is simpler and faster, IDEAL offers enhanced visibility of small vessels and improved venous suppression. This can be important in the extremities, where partial-volume effects are significant and pairs of deep veins course adjacent to each artery.

References:

- 1. Bangerter, 12th ISMRM, p.11, 2004.
- 2. Hargreaves, MRM 50:210, 2003.
- 3. Reeder, MRM 51:35, 2004.
- 4. Hwang, 12th ISMRM, p.268, 2004.
- 5. Vasanawala, MRM 43:82, 2000.
- 6. Nezafat, 14th ISMRM, p.596, 2006.
- 7. Le Roux, JMRI, p.163:23, 2003.
- 8. Brau, MRM, 59:382, 2008.
- 9. Bieri, MRM 56:1067, 2006.
- 10. Dharmakumar, MRM 53:574, 2005.

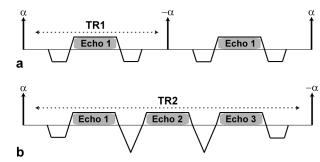
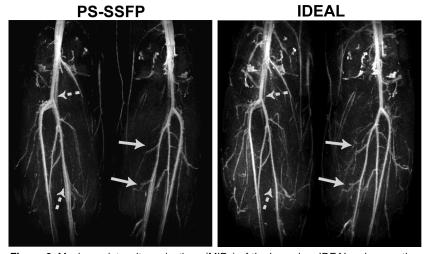
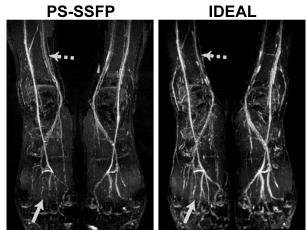




Figure 1. The pulse sequence diagrams for single-echo PS-SSFP (a) and multi-echo fly-back IDEAL (b).

Figure 2. Maximum-intensity projections (MIPs) of the lower leg. IDEAL enhances the small vessel depiction (solid arrows) and the venous suppression (dashed arrows).

Figure 3. MIPs of foot angiograms. IDEAL enhances small vessel depiction and improves venous suppression as shown by the solid and dashed arrows respectively.

	B/M ₁	A/V ₁	SNR ₁	B/M_2	A/V ₂	SNR ₂
PS-SSFP	3.65	1.29	16.76	2.66	1.23	13.76
IDEAL	2.75	1.62	19.77	2.15	1.51	19.51

Table 1. Blood/muscle (B/M) and arterial/venous (A/V) contrast as well as arterial blood SNR. The first and second sets of measurements were performed on the anterior tibial and dorsalis pedis arteries respectively.