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Introduction:  Transverse relaxation rates, R2 and R2* and the apparent diffusion coefficient (ADC) are all typically estimated from the exponential decay of MR 
signal magnitude as a function of either echo time (for R2 and R2*) or b-value (for ADC). Changes in R2 and R2* induced by ultrasmall paramagnetic iron oxide 
(USPIO) contrast agents, along with ADC, have recently been utilised to estimate vessel size index (VSI) in a range of contexts [1,2]. However, vessel size 
imaging tends to suffer from over-estimation of VSI when compared with gold-standard histological measurements [3]. In this study, a novel analysis method is 
described that offers a robust (accurate) approach to the estimation of ADC and of changes in R2 and R2* (ΔR2 and ΔR2*, respectively), based on the observation 
that noise in magnitude data is Rice-distributed [4]. This Bayesian maximum a posteriori (MAP) approach also offers benefits such as the provision of parameter 
uncertainties and estimates of the confidence that a change in R2 or R2* is significant, on a pixel-by-pixel basis. The approach is evaluated in vivo in PC3 orthotopic 
prostate tumours and compared with the conventional least-squares (LS) approach, which assumes noise to be normally-distributed. 

Materials and Methods:  
Data acquisition: PC3 orthotopic tumours were 

propagated in 6 nude mice and allowed to develop 
for 20 days. They were scanned on a 7T Bruker 
MicroImaging system using a spin-echo diffusion 
sequence (6 b-values from 6 to 500 s/mm2, 
TR=1000ms), a multi spin-echo sequence (MSE, 
12 TEs ranging from 12 to 144ms, and a multi 
gradient-echo sequence (MGE, 8 TEs ranging 
from 6.2 to 28.2ms. USPIO was administered via a 
tail vein and allowed to circulate for two minutes 
prior to the acquisition of a second set of MSE and 
MGE data.  

Data analysis: Data were fitted to a function of 
the form f(x)=f0e

-r.x, where (x,r)=(b,ADC) for the 
diffusion data, (x,r)=(TE,R2) for MSE data and 

(x,r)=(TE,R2*)  for MGE data; f0 is the signal intensity at TE or b=0 and, along with r, is a fitted parameter. Data were fitted using both a non-linear LS algorithm 
and a Bayesian MAP algorithm that maximised the following log-likelihood function [5]:  
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Here, I0 is the modified Bessel function of the zeroth kind, M is the 
magnitude data value, σ is the standard deviation of the Rice noise and N is 
the number of magnitude data points. σ was estimated by fitting a Rayleigh 
distribution to a histogram of magnitude values from a region of background 
noise [3]. ΔR2 and ΔR2* were estimated and their posterior distributions (the 
probability density function for each parameter on a per pixel basis) 
calculated using numerical convolution. Each posterior distribution was 
numerically integrated from ΔR2(*) = 0 to ∞ to produce maps defining the 
confidence of a positive change in R2(*) due to the presence of USPIO (see 
Fig. 1). Only pixels with a combined confidence of greater than 90% 
(p(ΔR2>0)>0.9) for both ΔR2 and ΔR2* were used in the subsequent analysis. 
The vessel size index (VSI) was estimated from the ΔR2, ΔR2* and ADC 
data, according to the approach defined by Troprès [6]. 

Histopathology: Hoechst 33342, a fluorescent endothelial stain, was 
administered via the tail vein as a terminal experiment. Using the approach of 
Troprès [3], measurements of vessel diameters from whole-tumour 
fluorescent composite images were converted to a vessel size index value 
equivalent to the MRI estimate, thereby enabling histological qualification.  
Results and Discussion: R2, R2* and ADC estimates from the LS algorithm were consistently lower than those from the MAP algorithm. The cause of this is 
illustrated in Fig. 1; the least-squares algorithm assumes normally-distributed noise, so weights high signal and low signal data points equally. The MAP approach 
offers a more appropriate model of the noise and as such is less weighted by low signal data points, giving more accurate parameter estimates. Figure 2 shows 
images from MAP R2* analysis from an example tumour, including the first echo image and the ΔR2* map. It is clear that ΔR2* values are highly uncertain in 
regions with low initial signal intensity, although the magnitude of these was comparable with those in the rest of the imaged portion of the tumour. These were 
removed from the analysis along with regions with an enhancement confidence of less than 90%. Mean ΔR2*, ΔR2 and ADC values were significantly larger when 
using the MAP approach (p<0.01), according to Wilcoxon rank sum tests. Using these values, the mean vessel size across the cohort was 63±25μm, compared with 
83±29μm from the LS approach, which were also significantly different (p<0.01). VSI from histological measurements was 67±6μm, which is in close agreement 
with the value from the MAP approach. 
Conclusion: The Bayesian MAP model proposed here for estimating VSI offers a number of advantages over the standard least-squares approach, including more 
robust parameter estimation and the ability to segment significantly enhancing regions and regions of poor precision. This therefore allows the removal of data 
unsuited to the subsequent VSI calculation, thereby improving the 
reliability of the technique. It is suggested that this approach could 
offer a significant increase in parameter accuracy when used in a 
range of contexts, in particular, drug efficacy studies. 
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Figure 3: Images from MAP R2* 
analysis in an example tumour: a) 
First echo magnitude image; b) 
ΔR2* image with pixels with a 
high uncertainty or insignificant 
enhancement removed; c) an R2* 
uncertainty map; d) a map of the 
probability that the R2* in each 
pixel has significantly increased 
following USPIO administration. 
Note that regions with low initial 
signal intensity in (a) have a high 
uncertainty in (c), so are of 
limited use in the subsequent VSI 
calculation and are removed. 

Figure 2: Example fits to (left) MGE and (right) MSE magnitude data 
from a single pixel with relatively low signal-to-noise, given by the least-
squares and Bayesian maximum a posteriori algorithms. Note that the LS 
algorithm attempts to fit the data symmetrically, whilst the MAP 
algorithm ignores data points with negligible signal, resulting in 
unbiased, larger R2 and R2* estimates. 
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Figure 1: a) MSE magnitude data, pre- and post-USPIO. b) Probability distributions for the data in a), 
given by numerically integrating the likelihood function over S0. c) Probability distribution for ΔR2* 
given by the numerical convolution of P(R2,pre-USPIO) and P(R2,post-USPIO). The probability that R2 
has increased is the integral of P(ΔR2) between 0 and ∞. 
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