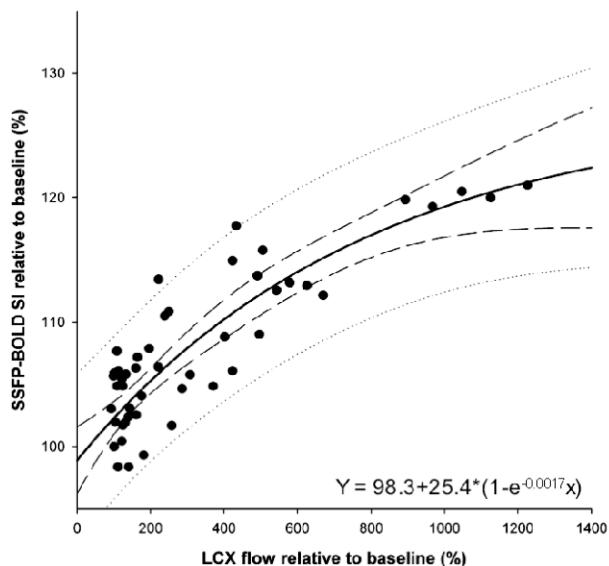


Assessment of Myocardial Perfusion Reserve with Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance Imaging

J. A. Flewitt¹, M. Voehringer^{1,2}, J. D. Green^{1,3}, and M. G. Friedrich¹

¹Stephenson CMR Centre, Calgary, Alberta, Canada, ²Robert-Bosch-Krankenhaus, Stuttgart, Germany, ³Siemens Healthcare, Calgary, Canada

Background: New Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance Imaging (BOLD-CMR) sequences show a high sensitivity and consistent image quality that allows for assessing tissue oxygenation. We hypothesized that BOLD-CMR can quantitatively assess myocardial blood flow changes using myocardial oxygenation as a biomarker.


Objective: To test whether a BOLD-CMR sequence accurately estimates myocardial perfusion changes.

Methods: Six anesthetized mongrel dogs were instrumented with a coronary infusion catheter in the circumflex coronary artery (LCX), an MR-compatible epivascular flow probe around the LCX and a catheter in the coronary sinus. Using a clinical 1.5 T MRI system (MAGNETOM Avanto, Siemens Healthcare, Germany), SSFP BOLD-CMR was performed during graded intracoronary infusion of adenosine in the LCX. Typical scan parameters were: Field-of view (FOV) 190x280 mm; matrix size 106x192; slice thickness 10 mm; T_R/T_E 5.8/2.9 ms; flip angle 90°; typical breath-hold duration 14s. Images were analyzed using clinically validated software (cmr⁴², Circle Cardiovascular Imaging Inc., Calgary, Canada) and the BOLD signal intensity (BOLD-SI) for each was calculated. Correlations of coronary flow, oxygen saturation in the coronary sinus and myocardial BOLD-CMR signal intensity (BOLD-SI) changes were calculated by regression analysis. The same CMR imaging protocol was used in 11 healthy volunteers (6 male, 5 female) before, during and after intravenous adenosine infusion (140 µg/kg). Myocardial perfusion reserve in the human volunteers was calculated from flow measurement in the coronary sinus using velocity-encoded CMR.

Results: In dogs, adenosine-induced blood flow changes in the LCX agreed very well with changes in coronary venous saturation (logarithmic scale, $r^2=0.94$, $p<0.001$). Furthermore, coronary venous saturation showed a strong yet linear correlation with BOLD-SI changes ($r^2=0.80$, $p<0.001$). Consequently, as shown in Figure 1, blood flow changes correlated very well with the BOLD-SI ($r^2=0.84$, $p<0.001$). The exponential correlation is described by the equation ($y = 98.3+25.4*(1-e^{-0.0017x})$) ($x=\text{flow}$, $y=\text{BOLD-SI}$). In the volunteers, adenosine infusion resulted in a significant myocardial perfusion increase ($416\pm69\%$ of baseline, $p<0.001$). BOLD SI increased significantly by $20.1\pm9.5\%$ ($p<0.001$ as compared to baseline). The reproducibility of the BOLD-SI in the two baseline measurements before and after adenosine infusion was excellent (mean difference $0.1\pm2.6\%$, $p=0.97$).

Conclusion: State-of-the-art BOLD-sensitive MRI sequences detect changes of myocardial perfusion in an experimental animal model and in humans *in vivo*. This technique may allow for an accurate, non-invasive assessment of myocardial perfusion reserve in humans.

Figure 1: Blood flow changes and BOLD-SI in canine model under adenosine infusion.

