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Introduction: In addition to localizing task-related cortical and subcortical activity, FMRI data can be used to model various forms of interactions 
among active regions of interest (ROIs) in the brain. Granger causality (GC) is a connectivity modeling approach with the following premises: (a) a 
region causally connected to another would leave in the latter a time-lagged version of its own signal components; and (b) the latency in the signal 
indicates a causal relation. In a typical multivariate GC analysis, the causality among the pre-selected ROIs is determined in a vector auto-regressive 
(VAR) model with appropriate lags (time delay order) over which connectivity is to be examined. A second-stage analysis can then be conducted to 
examine group differences in connectivity. We present a multivariate implementation of GC that takes into account the idiosyncrasies of FMRI data 
and provides for inference on the sign of correlation, evolution of the network over multiple lags, model order tuning, and model diagnosis. We also 
propose a valid group analysis per lag based on signed path coefficients to reveal the network at the group level. 
Methods: We start with an extended VAR(p) model Y(t)=α+A1Y(t-1)+…+ApY(t-p)+BZ(t)+ε(t), where: Y(t) is an n×1 vector containing the BOLD 
response of n ROIs at time t; Z(t) is an q×1 vector containing exogenous variables (covariates or confounds) at time t; p and q are the number of lags 
and confounds respectively; α is an n×1 vector modeling the baseline; Ai is an n×n matrix with each element reflecting the effect from one ROI to 
another at time lag i (i=1,…,p); B is an n×q matrix with each element modeling the effect of a confound on an ROI; and ε(t) is the error term. The 
confounds can be baseline drift, head motion parameters, tasks of no interest, physiological measurements, or dummy variables corresponding to 
time breaks in the time series due to multiple blocks/runs/sessions and to time points censored because of signal irregularities. 

Unlike previous implementations [1, 2] of the standard VAR(p) model Y(t)=α+A1Y(t-1)+…+ApY(t-p)+ε(t) with significance based on F-
statistics across multiple lags, our approach with an extended model allows us to perform whole network causality analysis while simultaneously 
modeling confounding effects, instead of regressing them out prior to the GC analysis. Furthermore, our implementation carries correlation signs at 
different lags all the way to the group level analysis, because reducing correlations to F-statistics and collapsing networks across lags can 
significantly alter the identified network. Four criteria (AIC, FPE, HQ, and SC) are provided to assist the user in selecting appropriate lag levels 
(order) of the model, and one network per lag is identified based on path coefficients and their t-statistics, potentially showing the network evolution 
through time (lags). Lastly, a set of model diagnosis tests are available to check for stationarity (testing roots of characteristic polynomial), residual 
normality tests (Gaussian process, skewness, and kurtosis), residual autocorrelation (portmanteau, Breusch-Godfrey, and Edgerton-Shukur tests), 
autoregressive conditional heteroskedasticity (ARCH) test for time-varying volatility, and structure stability (or stationarity detection). Our modeling 
approach was validated at the individual subject level by comparing with [2] when using the same model and input.  

To illustrate the importance of preserving the correlation sign, we modeled the network among three ROIs—dorsolateral prefrontal cortex 
(DLPFC), dorsolateral caudate, and thalamus—that comprise the cognitive division of the cortico-striatal-thalamic loop, a well-validated neural 
circuit [3].  We collected 250 volume images during eye-closed rest [cf. ref. 4: 18 axial slices, spiral in-out; TR=1.2s, TE=30ms, FOV=22cm, 
matrix=64×64, slice thickness=5mm, flip angle=77°], from each of 20 participants.  
Results: For this analysis, we adopted a lag of 1, as suggested by the model tuning step of our software written in R [5, 6]. The left half of Figure 1 
shows the group network obtained with a one-sample t-test using log-transformed F-statistics of individual subjects for each connection, as typically 
practiced in the literature [e.g., 1]. The network in the right half of Figure 1 was obtained with a one-sample t-test using the signed path coefficients 
instead. Note the marked differences between the two networks: none of the inter-regional connections were identified with transformed F-statistics 
as input, and the information about the correlation sign was totally lost, which can be attributed to either ignoring the path coefficient sign, the 
arbitrary transformation of the F-statistics, or both.  

 
 
Conclusions: We developed a platform-independent modeling tool that provides valid and consistent multivariate Granger causality analysis 
particularly suited for FMRI data. The program identifies patterns of association among brain ROIs that have been identified with other techniques, 
and generates a graphic representation of the identified network. Importantly, and unlike previous implementations of GC analysis for FMRI, this 
technique preserves information concerning the sign, in addition to the direction of prior prediction (causality) between ROI time courses from 
individual subjects all the way to the group level analysis. The software is in open-source R and available for download. 
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Figure 1 Two group networks of 3 ROIs in the left brain 
(DLPFC, dorsolateral caudate, and thalamus) were 
identified in a VAR(1) model. Confounds were 6 head 
motion parameters, respiration and heart rates, and 3rd-
order Legendre polynomials to allow for slow drifts in 
the signal. Left and right networks were obtained with 
log-transformed F-statistics and signed correlation 
(respectively) from causality analysis with 20 subjects 
(p=0.05, corrected for multiple comparisons). Paths in 
red indicate positive correlation, while a black path 
means unknown correlation sign. Line thickness reflects 
the relative strength of a path. A circle around an ROI 
indicates a significant first-order auto-correlation. 
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