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Purpose: The BOLD effect is modeled as primarily due to a mismatch of cerebral blood flow (CBF) and cerebral 
metabolic rate of O2 (CMRO2), but it is still not clear how we should include the effects of changes in cerebral blood 
volume (CBV) in the model. Having an accurate model is important because it serves as the framework for interpreting 
combined CBF and BOLD measurements in the calibrated-BOLD approach, providing quantitative assessments of n, an 
index of CBF/CMRO2 coupling defined as the ratio of the two fractional changes. The original Davis model [1] only took 
into account CBV changes on the venous side, and yet a number of recent studies have found significant CBV changes 
on the arterial side [2]. While CBV increases on the venous side increase the local deoxyhemoglobin content and reduce 
the BOLD signal, arterial CBV changes can increase the BOLD signal by exchanging blood water, with an intrinsically 
higher MR signal, for tissue water. Here the BOLD signal model is extended to include arterial CBV effects, and the new 
model was used to test the range of error that occurs when data is analyzed with the simpler Davis model to estimate n. 
 
BOLD signal model: The original Davis model (Eq 1) expresses 
the BOLD signal in terms of the baseline-normalized CBF (f) and 
CMRO2 (r) with venous CBV changes described as a power law 
relation with f with exponent α. Additional parameters are β, an 
exponent originally derived from Monte Carlo simulations of 
diffusion effects around vessels, and a scaling parameter M. A 
more recent model described by Obata et al [3] (Eq 2) explicitly 
considered intravascular signal changes as well as extravascular 
changes, and expressed the BOLD signal as two terms 
describing the effects of total baseline-normalized 
deoxyhemoglobin (q) and venous CBV (v), with parameters k1, k2, 
and k3, and a scaling factor of venous CBV (V0). The connection 
with CBF/CMRO2 is the relation q=vr/f. This model was modified 
to include effects of changes in arterial CBV (Eq 3), with v now 
representing total CBV (and assumed relation to f with exponent 
α) and a separate exponent αv describing the venous CBV 
change. Additional parameters are a scaling parameter A, and a parameter κ that describes the relative magnitudes of 
total deoxyhemoglobin and other volume effects. The parameters κ and αv (Eqs 4 and 5) depend on three parameters 
related to arterial CBV: wA, the arterial CBV fraction at rest; δA, the fraction of the CBV increase with activation that is on 
the arterial side; and εA the intrinsic signal ratio of arterial blood to tissue. This more general model reduces to the Obata 
model if δA=0, and, although not as obviously, closely approximates the Davis model when A=Mβ, κ=(β-1)/β, and αv=α.  
 
Simulations: In the calibrated BOLD approach, CBF and BOLD responses are 
measured to both brain activation and to hypercapnia. The hypercapnia 
experiment is used to measure M from Eq 1 with the assumption that there is no 
change in CMRO2 (r=1). The activation data is then analyzed to calculate r with 
the measured value of M. To test the importance of arterial CBV effects in this 
analysis, activation and hypercapnia data were simulated for different true 
values with Eq 3 and then analyzed with Eq 1 to derive an estimated n. This 
calculation was done for three values of the arterial fraction of the change in 
CBV (δA), with assumed values of wA=0.3, α=0.4, a 30% CBF change with 
activation, and a 40% CBF change with hypercapnia. For proportional changes 
across arterial and venous vessels (δA=wA=30%), the Davis model gives an 
accurate estimate of n. As the arterial fraction increases the estimated n is larger than the true n.  
 
Conclusions: The new model provides a way to assess the effects of CBV change in different compartments. For the 
calibrated BOLD experiment, the simulations suggest that use of the simpler Davis model may lead to an overestimate of 
n when arterial CBV changes are large, and so these effects cannot account for differences with some PET 
measurements that find larger values of n than those typically found with calibrated BOLD.  
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  (Davis model, [1]) 

(2) δS = V0[(k1 + k2)(1− q) − (k2 + k3)(1− v)] 
               (Obata model [3]) 
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(4) αv = α 1−δa
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(5) κ = (1−δA )(k2 + k3) + (εA −1)δA

(1− wA )(k1 + k2)
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