Physiological Origin of Low Frequency Drift in BOLD FMRI
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I ntroduction
Low frequency fluctuation or drift is commonly observed in functional MRI data acquired using BOLD contrast, which is an important factor affecting the reliability of
BOLD fMRI and suitable experimental design. Earlier studies showed drifts may be attributed to scanner instabilities which can be observed with inert phantoms as
well as human subjects [1]. Other evidence suggests low frequency fluctuations or baseline drift effects may reflect spontaneous neuron events arising from fluctuations
in metabolic-linked brain physiology [2]. Such metabolic-linked noise can be modeled by its unique dependence on echo-time, image intensity [3]. More recently, there
has been other evidence suggesting that respiratory and cardiac pulsation effects contribute to the enhanced low frequency noise in BOLD fMRI through aliasing due to
the low sample rate or variations in cardiac and respiratory rate [4,5]. Due to the inconsistencies in the existing understanding of drift effects, the purpose of the present
study was to investigate which of the above 3 sources was the main origin of slow drifts in BOLD fMRI (<0.01Hz) by systematically comparing drift effects on human
brain and that of an agarose phantom.

Methods

All experiments were performed on a Siemens 3T Trio system. 15 healthy subjects (age 26.5+7.0 yrs, 10 males) participated in this study after they provided written
informed consent. The fMRI study consisted of three main experiments: (1) resting state with varying TE: To investigate the TE dependency, a single-shot dual-echo
gradient-echo EPI with interleaved TE was developed to acquired 4 different TE data sets for every 2 consecutive TRs (TE;=20ms and TE,=50ms for one TR,
TE;=35ms and TE,=65ms for the following TR). Seven subjects (age 23.4+1.7 yrs, 4 males) were scanned in this experiment using the product 12 channel head coil.
Ten oblique slices with Smm thickness and 1mm gap were scanned parallel to the anterior-posterior commissure (AC-PC). Other parameters included: FOV=220mm;
matrix=64x64; bandwidth=2442Hz/pixel; TR=1s; flip angle=65°; the scan time was 8min. (2) Task
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was calculated by scaling M, as reference to the mean intensity of the corresponding raw EPI time series
(expressed as percentage). Statistical analyses were performed using SPSS software.

Results and discussion

Fig. 1 shows mean M, and M, as a function of TE in the whole brain of 7 healthy subjects and the agarose gel
phantom. Both human and phantom data demonstrated significant variations of both M, and M, with TE (p<0.001).
In humans (Fig. la&b), with or without correction of respiration and cardiac effects, M, reached the maximum
when TE approximated the T2* of the brain (T2* = 51.8 + 3.1ms), and M, showed linear increase with TE; In the
agarose phantom (T2* = 56.8+1.2ms) M, decreased with TE, and the change in M,y across TE was much smaller
than that of the human brain (Fig. 1c&d). The observed TE dependence of drift in human brain is consistent with the
characteristic TE dependence of the BOLD contrast and physiological noise in BOLD fMRI [3]. Brain segmentation
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analyses suggested such TE dependence was mainly observed in gray matter in our study. From Fig. la&b, the Fig.2 Scatter plot of mean relative signal
contribution of respiration and cardiac fluctuations to low frequency drift accounted for approximately 4.4% of Mg change during activation and drift at
in whole brain, which was not significant affected by TE (p=0.57). We further found that, there was a strong positive baseline in visual ROI each color
correlation between drift magnitudes at baseline and BOLD signal changes during task activation across subjects as represents one subject.

well as across pixels within the visual cortex. Fig. 2 shows scatter plot of mean M, at baseline vs.
the mean fractional BOLD signal change during activation in visual cortex ROI at 4 different TEs in
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and phantom, the correlation between task induced BOLD signal changes and slow drifts at baseline
in human brain provide converging evidence supporting the primarily physiological origin of low
frequency drifts in BOLD fMRI. We further demonstrate that respiratory and cardiac pulsations are
not a main source of low frequency drifts. Therefore, spontaneous fluctuation in metabolic linked
brain physiology should be the main source of drift effects in BOLD fMRI.
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Fig.3 Scatter plot of relative BOLD signal change during
activation vs. relative drift at baseline from a subject across
activated pixels in visual ROI
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