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Introduction: The concept of one-voxel-one-coil(OVOC) acquisition has been introduced as an extreme realization of parallel imaging where spatial information is
predominantly encoded through the sensitive volumes of multiple small coils. In implementations as MR-encephalography(MREG) or Inverse Imaging (Inl) this allows
very rapid examination of functional activation (1,2). The signal time course of MREG-acquisitions shows strong pulsatility due to breathing and ECG. For fMRI stu-
dies these are treated as confounds and removed by suitable physiological noise correction algorithms (3). The purpose of this study was to explore the feasibility of
MREG/acquisition to measure the spatiotemporal dynamics of ECG-pulsatility.

Methods: Experiments on 8 volunteers were performed on a 3T Tim Trio (Siemens) using a custom made 8 channel head coil array (MGH, L.L.Wald). Data acquisi-
tion was performed using a using COBRA-acquisition (TE=10 ms, FA 15 deg) with four projections at TR= 20 ms per projection or 80 ms per image for a total of 140s
(4). A single transverse slice was located through the area of the calcerine fissure as in fMRI-studies. Images were reconstructed by constrained reconstruction using
Tikhonov regularization as previously described (4). ECG-signals were coregistered with data acquisition in a time-locked manner. For retrospective synchronization
trigger signals were identified as the maxima of the registered signals. One dataset had to be discarded because of strong gradient induced spikes in the ECG-signal. Af-
ter removal of the first 20s to ensure steady state the resulting signal timecourse was high-pass filtered with a cut-off frequency of 0.5 Hz to remove low frequency sig-
nal fluctuations. Data was then resampled to the ECG-cycle using constant time- as well as constant phase resampling. In constant time resampling data are reordered
starting with each ECG-trigger keeping the data acquisition constant. The duration of the resampling cycles is set to the length of the shortest ECG-cycle. This is based
on the asumption that variations in the pulse period are mainly caused by variations in the endsystole whereas the systolic phase remains constant. In constant phase re-
sampling each ECG-interval is stretched to a constant length by nonlinear interpolation.
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Discussion: The observed apparent spread of arterial pulsatility from the cortex inwards is a consequence 440 ms 480 fms 920 s 560 s 000 rms
of a superposition of three hemodynamic events: First arterial pulsatility is observed in the cortex which is
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broad hump at the center can be attributed to CSF-pulsatility and/or brain pulsation.
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downstream venules and veins will increase CBV and thus spin density. Negative contributions arise from

flow dependant dephasing and (potentially) from a dynamic BOLD-effect due to a shift between arterial

and venous contributions over the ECG-cycle. An exact analysis of the physiological basis of the ob-  Fig. 1. Pulsatility maps along the ECG-cycle at 20 ms in-
served signal changes therefore is highly complex and requires further studies. tervals
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Conclusions: Our results indicate, that MREG can be used as a robust and reliable tool to monitor arterial
pulsatility. The results shown are generated from periodic averaging over 2 min to allow for quantitative
comparison of pulsatility effects. The high sensitivity of the methods allows a qualitative assessment di-
rectly on the acquired data in real-time. The method thus can be used as a vey fast and sensitive method to
add information about the spatiotemporal dynamics of arterial pulsatility.

Potential areas of clinical applications are the diagnosis and assessment of territories with pathological
flow dynamics in stroke patients, territorial/ hemispheric pulsatility asymmetries in patients with atheros-
clerotic disease and other pathologies leading to alterations in arterial pulsatility.
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Fig. 2: Single pixel signal time courses along positions
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