
 
Figure 1: Left and Center: ANN estimated T1 maps before 
(Left) and after injection of Gadomer in a U251 model of 
cerebral tumor.  Right: ΔR1.  These maps were constructed 
using an ANN trained by an analytical model. 
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Introduction:  
Fast and accurate measurement of the longitudinal relaxation time T1, has become increasingly important to quantitatively estimate 
tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space using R1 
(R1=1/ T1) maps in dynamic contrast-enhanced MRI (DCE-MRI) [1-5]. In the past, we have used an imaging variant of the Look-Locker 
sequence, the T One by Multiple Readout Pulses (TOMROP) sequence, for estimates of the temporal variation of contrast agent 
concentration in tissue and blood [6]. The Look-Locker (LL) sequence provides accurate T1 estimates, with the advantages of shorter 
acquisition time, and a wide range of sampling times post-inversion [7]. In the Look-Locker experiment, the relationship between T1 and 
the acquired signal in the Bloch equation is fairly complex. Finding the T1 value for the LL is generally accomplished by some form of 
multi-dimensional curve fitting used to estimate a set of unknown parameters (T1, tip-angle, M0, etc) in the LL signal [7]. However, these 
fitting methods are sensitive to initial guesses and a biased estimation of one parameter will bias estimates of the other parameters. In 
this study, an Adaptive Neural Network (ANN) is trained and employed as an unbiased estimator of T1. The presented estimator was 
tested by simulating the LL signal at different levels of SNR and results of its application to the DCE experimental data were compared 
with the T1 maps estimated by conventional methods (Simplex-least square fitting) and the values of T1 reported by literature.  
Materials and Methods: We hypothesized that, given a signal generated by a LL model, an ANN could be trained to directly estimate 
T1. The analytical equation of the Look-Locker signal (Gelman et al [7] was considered as the gold standard of training and a set of LL 
signals for a wide range of T1’s were generated. For each T1 value LL signal inputs were generated by varying the other independent 
parameters in the synthetic model of signal (T2*, M0 etc). A range of Gaussian noise (SNRs of 10, 15, 20, 30, 50, and 100) was added 
to all simulated signals; simulated signals were input to the ANN and 
their T1 value was used as the ANN training output. To characterize 
the generalization error the ANN was trained and validated by the K-
Folding Cross Validation (KFCV) method [8-9]. The average error, 
calculated by the Area Under Receiver Operator Characteristic 
(AUROCC) of the ANN validated on the K omitted subsets then 
served as the estimate of the generalization error. In this study, to 
assure a very reliable estimate of the generalization error, K was set 
to 20 for ~900,000 samples (45000 in each fold). The ANN thus 
constructed had a single output, an estimate of T1 value. To illustrate 
and test the ANN’s accuracy for analysis of the experimental LL 
data, it was also applied to the LL sequences acquired from 19 
CrI:NIH nude rats implanted with U251n cells (2x10^5 cells/0.1 ml) 
intracerebrally. All rats with 2-week old tumors, were scanned using 
a 7T magnet, Bruker Avance console, and Bruker-supplied RF coils. A T-One by Multiple Read-Out Pulses (TOMROP) sequence 
acquired at baseline and every 145 s following injection of a contrast agent, Gadomer (Schering AG). Figure 1 illustrates an example of 
pre and post contrast T1 maps estimated by the model-trained ANN, and a map of ΔR1. To check the accuracy of the ANN in temporal 
estimation, the ΔR1 maps for each slice were constructed and the lesion time signature, normal area and sagittal sinus were plotted and 
compared. Results demonstrated that the model-trained ANN was capable of estimating a reliable map of T1. 
Results and discussion: This study proposes an ANN trained by an analytical input to demonstrate the flexibility of ANNs, and the 
multiple paths that these instruments offer in the assessment of nonlinear input-response systems.  This pilot study imply possibility that 
generation of an ANN based on the Shutter Speed Model, with a wide range of model conditions (transfer constants, compartmental 
water exchange rates and sizes, etc.) as model training sets. In this study an accurate estimator for direct and rapid quantification of 
longitudinal T1 relaxation time is proposed. Beside simulation, to illustrate and test the method’s accuracy for analysis of the 
experimental LL data, it was also applied to the LL sequences acquired from 19 animals (3 slices each with U251 tumor (An example is 
shown in figure 2). Experimental results of the proposed method for all 19 animals were also compared to the results of the 
conventional method (Simplex method with least square fitting). Results imply that the proposed and conventional methods are highly 
correlated (r=0.83, p<0.0001). Therefore the proposed method has a very good potential to be used as a fast and accurate T1 map or 
delta R1 map estimator from LL data in DCE studies which play an important role in quantification of physiological parameters. 
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