

Intravascular Water Molecule Lifetime in the Japanese Macaque Brain

J. M. Njus¹, J. R. Pollaro¹, M. T. Snodgrass¹, J. Cunneen¹, E. Muldoon¹, V. B. Warren², X. Li¹, C. S. Springer¹, S. G. Kohama², and W. D. Rooney¹

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States, ²Oregon National Primate Research Center, Beaverton, OR, United States

Introduction: Non-human primate (NHP) models of cerebral pathology are important for development and efficacy of new treatment therapies.¹⁻³ Interestingly, the remarkable physiological connection between NHPs and humans has not been investigated using dynamic contrast-enhanced (DCE) MRI. DCE-MRI measurements using gadolinium (Gd) based contrast reagents (CRs) are useful for characterizing the blood vessel properties in human brain tissue,⁴⁻¹¹ and are sensitive to disease-related changes in vascular properties.^{10,11} Physiologically important parameters, such as blood-brain barrier (BBB) permeability, blood volume, and transendothelial water exchange have been examined in normal human brain,⁵⁻⁸ but not in NHP. In this study, we use DCE MRI to investigate BBB permeability (K^{trans}), blood volume fraction (v_b), and the intravascular water lifetime (τ_b) in Japanese macaque brain.

Methods: All animal care and experimental procedures were IACUC-approved. Ten Japanese macaques (JMs) (4 males, 6 females, ages 7.7-19.6 yr) were selected from a free-ranging colony maintained by our institution. All MR data were collected with a 3T MRI Instrument (Siemens TRIO) using a quadrature transmit/receive extremity RF coil. Animals were initially sedated with Telazol, intubated and maintained on 1% isoflurane in 100% O₂ during the MRI study. The animals were continuously monitored by pulse oximetry, respiration, and end tidal CO₂. Five full volume parametric ¹H₂O T₁ maps were produced at different times relative to CR administration by voxel-wise fittings of four consecutively acquired IR-MPRAGE turboFLASH acquisitions (3D TFL: TR/TE = 2500/3.49 msec; FA = 8°) collected with different inversion times (TI = 200, 900, 2000 ms, and also with no inversion pulse). ¹H₂O T₁ maps were produced by numerically evaluating the Bloch equations for the variable TI data set accounting for all RF pulses and delays with the constraint that each voxel exhibited a monoexponential IR recovery. For DCE measurements, a 0.2 mmol/kg dose of Gd (Gadoteridol, Bracco Diagnostics, Inc) was administered at 0.5 mL/sec using an infusion pump. For each animal, a pre-Gd T₁ map, and four post-Gd T₁ maps were collected at ~6.8, ~17.5, ~28.3, and ~42.7 min. (time values represent the approximate time from CR injection to the acquisition mid-points). The T₁ maps were then masked (performed manually for each animal) to select the entire brain. White matter (WM) and gray matter (GM) T₁ values were obtained from fitting the two prominent peaks in the full volume T₁ histograms to a Gaussian function. BBB Gd permeability was determined as K^{trans} (the volume transfer rate constant for CR across the BBB),^{4,5} blood volume fraction as v_b (%), and transendothelial exchange was characterized by the mean residence lifetime of the blood water molecule, τ_b (ms). K^{trans} , v_b , and τ_b were determined from multi-parameter fittings of the pre- and post-Gd WM histogram R_{1t} [$\equiv 1/T_1$] peak values to a two compartment model [for blood plasma and the extracellular-extravascular space (EES)] that also accounts for equilibrium transendothelial exchange of molecular water.⁸⁻¹¹

Results and Discussion: Administration of Gd decreases T₁ in JM WM (Figure 1). The temporal WM T₁ change results from the Gd concentration changes in the plasma and EES (due to nonzero K^{trans}) spaces, and also from trans-BBB water exchange. The influence of CR leakage (K^{trans}) is shown in Figure 2, where for nonzero K^{trans} , the R_{1t} is elevated at any point in time. Though small, a nonzero K^{trans} can result in substantial v_b and τ_b errors if they are calculated assuming $K^{trans} = 0$. In one JM, fitting^{8,9} R_{1t} vs. R_{1b} yielded v_b and τ_b values of ~2.8% and ~430 ms, respectively, for zero K^{trans} , and ~2.5% and ~299 ms for $K^{trans} = 5.5 \times 10^{-5} \text{ min}^{-1}$ (Figure 3). Table 1 lists the uncorrected and corrected (via the group mean K^{trans}) v_b and τ_b values for each macaque. The mean WM K^{trans} ($\sim 5.5 \times 10^{-5} \text{ min}^{-1}$) and corrected τ_b (~300 ms) values in the sedated JM are very similar to K^{trans} ($\sim 2 \times 10^{-5} \text{ min}^{-1}$)¹¹ and τ_b (~260 ms)⁹ in conscious humans, whereas the mean JM v_b (~2.5%) value is somewhat greater than human v_b (~1.4%).^{9,11} Fitting precision improved after correcting the data for CR extravasation.

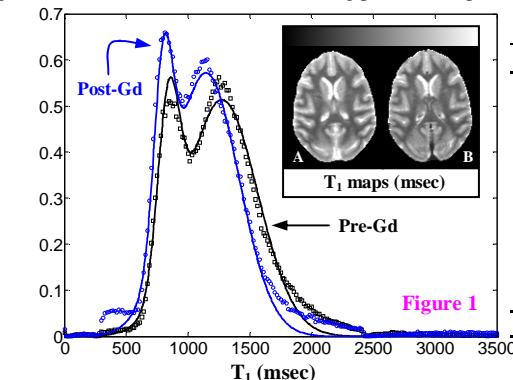
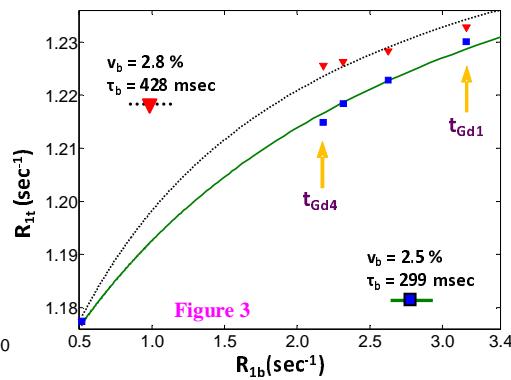
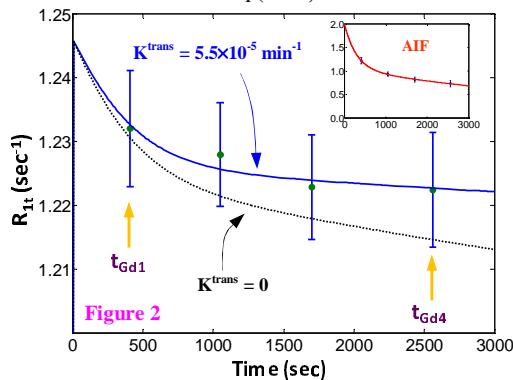




Table 1. Pharmacokinetic parameters: v_b , and τ_b

N	Sex	v_b (%)	v_b (%)†	τ_b (msec)	τ_b (msec)
1	F	3.2	2.9	294	296
2	F	2.8	2.5	428	299
3	F	3.0	2.8	528	296
4	F	2.3	2.1	308	304
5	F	1.9	1.6	310	128
6	F	4.3	4.0	282	152
7	M	3.2	3.1	289	291
8	M	3.4	3.0	291	293
9	M	1.3	1.4	973	654
10	M	2.0	2.0	898	310
Avg. (± SE):					
2.7 (± 0.3) 2.5 (± 0.3) 469 (± 76) 302 (± 44)					

† Corrected using $K^{trans} = 5.5 \times 10^{-5} \text{ min}^{-1}$

References: 1. Hart, et. al., *Drug Discov. Today* 11;58-66 (2006). 2. Blezner, et. al., *NMR Biomed.* 18;1:545-547 (1991). 3. LaVerde, et. al., *Magn. Reson. Med.* 57;201-205 (2007). 4. Tofts, et. al., *Magn. Reson. Med.* 17;357-367 (1991). 5. Tofts, *J. Magn. Reson. Imaging* 7;91-101 (1997). 6. Donahue, et. al., *Magn. Reson. Med.* 36;858-867 (1996). 7. Schwarzbauer, et. al., *Magn. Reson. Med.* 37;769-777 (1997). 8. Rooney, et. al., *PISM RM* 11;2188 (2003). 9. Rooney, et. al., *PISM RM* 11;1390 (2004). 10. Njus, et. al., *PISM RM* 15;2193 (2007). 11. Njus, et. al., *PISM RM* 16;3431 (2008).

Grant Support: OHSU/Vertex, SRA-05-07-1, NIH RO1-EB007258, NIH: RO1-NS40801, RO1-EB00422

Figure 1. Full volume T₁ histogram values and fittings produced from the pre-Gd and (~6.8 min) post-Gd T₁ data sets of a 19.2 yr old female macaque. The inset (upper right corner) displays two T₁ maps, the map on the left (A) is a slice from the pre-Gd data, and the map on the right (B) is the same slice from the post-Gd data. The T₁ values in the maps are represented by the grayscale (0-2000 ms) located above the maps.

Figure 2. WM R_{1t} [$\equiv 1/T_1$] vs. time. The R_{1t} data in the graph represent the group mean R_{1t} values (\pm SE) across the pharmacokinetic time series. Displayed are the curves obtained from fitting the R_{1t} data to a model that allows for subtle CR leakage across the BBB ($K^{trans} > 0$), and without CR leakage ($K^{trans} = 0$). The difference between the two curves increases with time: The inset (upper right corner) displays the arterial input function [AIF; C_p(t) (mM)].

Figure 3. WM R_{1t} vs. R_{1b} data and fittings obtained from a 16.7 yr old female JM subject. Displayed are the curves obtained from R_{1t} vs. R_{1b} fittings of the (uncorrected; $K^{trans} = 0$) R_{1t} data (red inverted triangles), and the R_{1t} data (blue squares) corrected for CR leakage ($K^{trans} > 0$). Parameters (v_b and τ_b) produced from the fittings are shown in the corners of the figure. The difference between the uncorrected and K^{trans} -corrected R_{1t} values with time is proportional to the difference in the R_{1t}(t) curves in Figure 2 (see labels t_{Gd1}, t_{Gd4}).