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Introduction: Brain connectivity matrices are highly resourceful representations of network connectivity relating specialized regions 
of the brain to function. Constructing connectivity matrices were normally created observing post-mortem tracer injected mammalian 
specimens [8] in which connection patterns were characterized as exhibiting “small-world” attributes [11]. Recently, noninvasive 
techniques using diffusion MRI were used to construct in-vivo connectivity matrices and networks [1,4-7,9]. However with the 
existence of numerous fiber tracking techniques, using diffusion MRI to construct connectivity networks leads to ambiguity in 
interpreting results because critical evaluation of connectivity is dependent on the implemented fiber tracking algorithm. We propose a 
method to measure error in obtaining connectivity matrices allowing for greater confidence in interpreting results.  
Methods: Error is measured with the use of a residual bootstrap approach; an empirical non-parametric statistical technique based on 
data resampling that has previously been used to quantify uncertainties in diffusion MRI parameters [2,3,5]. The residual bootstrap 
approach is able to yield unbiased standard errors of constructed connectivity matrices regardless of implemented fiber tracking 
technique. We constructed a simple connectivity matrix that examines the number of streamlines between pairs of 63 Brodmann ROIs 
of a normal control subject; although any parameter can be examined such as FA or ADC. For further simplicity, we chose to use the 
FACT algorithm but as previously stated any fiber tracking algorithm can be used. Residual bootstrap resampling (N = 1000 gold 
standard; N = 200 asymptotic limit) was performed to yield standard errors of the number of tracks between the pairs of ROIs (Fig. 1).  

 
Results: Below, we present the connectivity matrix of number of streamlines and a useful fractional error (FE) matrix in which we 
normalize the standard error with the number of streamlines (Fig. 2,3). The fractional error matrix reveals that for the majority of pair 
of ROIs there exists large error demonstrating the variability that exists in implementing a non robust fiber tracking algorithm. 
Observing a particular pair of ROIs, the cuneus (occipital lobe) and superior parietal, the FE matrix shows high variability in the 
number of streamlines demonstrating the inconsistency of the FACT algorithm in tracking those regions. This is consistent with 
previous literature in which crossing fibers are most likely to exist between those two regions in which a deterministic fiber tracking 
algorithm may fail to resolve [10]. 

 
Discussion/Conclusion: Connectivity matrices provide a wealth of information and are useful in characterizing the connections 
between different regions of the brain. However our results illustrate the error that may exist in constructing connectivity matrices and 
the need to quantify variability that may result in choosing a particular fiber tracking algorithm. As a result of quantifying this 
variability, connectivity matrices constructed with different fiber tracking algorithms can be compared and interpreted. 
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